计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (20): 277-285.DOI: 10.3778/j.issn.1002-8331.2103-0292
李江坤,黄海燕
LI Jiangkun, HUANG Haiyan
摘要: 针对工业系统变量之间存在动态和相互关联特性导致关键变量预测精度降低问题,提出一种互信息深度堆叠稀疏自编码数据特征网络(mutual information-deep stack sparse auto-encoder,MI-DSSAE)结合深度长短期记忆(deep LSTM,DLSTM)预测模型。MI-DSSAE模型对稀疏编码器改进,采用堆叠稀疏编码器结构,引入互信息作为重构损失权重,对多个稀疏编码器隐层迁移并微调。预测部分采用深度DLSTM网络结构,用双层Bi-LSTM结构对序列数据的动态变化特性双向捕捉,将输出数据输入到普通LSTM进行记忆处理,进行全连接层加权预测关键质量变量。采用流程化工业案例脱丁烷塔的C4含量对提出的模型验证,同时对比RNN、LSTM、GRU模型以及MI-DSSAE-RNN、MI-DSSAE-LSTM、MI-DSSAE-GRU等模型,通过RMSE、R2和MAE多项回归误差指标对比分析,验证MI-DSSAE-DLSTM模型的有效性。