计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (6): 227-230.DOI: 10.3778/j.issn.1002-8331.1507-0179

• 工程与应用 • 上一篇    下一篇

基于深度置信网络的4-CBA软测量建模

刘瑞兰,毛佳敏   

  1. 南京邮电大学 自动化学院,南京 210023
  • 出版日期:2017-03-15 发布日期:2017-05-11

Soft sensor modeling of 4-CBA based on deep belief networks

LIU Ruilan, MAO Jiamin   

  1. School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Online:2017-03-15 Published:2017-05-11

摘要: PTA工业生产过程中4-CBA的含量是评价其产品质量的重要依据。将深度置信网络和已有的浅层算法相结合,提出基于深度置信网络的4-CBA软测量模型。深度置信网络是一种典型的深度学习算法,该算法在特征学习方面优势显著。根据实验结果,基于深度置信网络的软测量模型能够很好地估计4-CBA含量,和单纯的BP神经网络模型相比,基于深度置信网络的模型预测精度更高。

关键词: 深度学习, 深度置信网络, 神经网络, 软测量

Abstract: In industrial PTA production process, 4-CBA concentration is the important basis of PTA product quality evaluation. This paper combining the deep belief networks and BP neural networks proposes a soft sensor model of 4-CBA based on deep belief networks. Deep belief network is one kind of typical deep learning algorithm. The algorithm has remarkable superiority in feature learning. According to experimental results, a soft sensor model based on deep belief networks can predict 4-CBA concentration well. Compared with BP neural network model, the model based on deep belief networks has higher prediction precision.

Key words: deep learning, deep belief networks, neural networks, soft sensor