计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 123-131.DOI: 10.3778/j.issn.1002-8331.2010-0017

• 大数据与云计算 • 上一篇    下一篇

异质信息融合网络嵌入的注意力偏好推荐方法

张杰,张月琴,张泽华,刘志鑫,雷祥   

  1. 1.太原理工大学 信息与计算机学院,山西 晋中 030600
    2.太原清众鑫科技有限公司,太原 020300
  • 出版日期:2021-11-01 发布日期:2021-11-04

Attention Preference Recommendation Methods with Fusing Network Embedding in Heterogeneous Information

ZHANG Jie, ZHANG Yueqin, ZHANG Zehua, LIU Zhixin, LEI Xiang   

  1. 1.College of Information and Computer, Taiyuan University of Technology, Jinzhong, Taiyuan 030600, China
    2.Taiyuan Qingzhongxin Technology Co., Ltd., Taiyuan 020300, China
  • Online:2021-11-01 Published:2021-11-04

摘要:

基于异质信息网络的推荐方法已成为当前数据挖掘领域的研究热点。但传统基于异质信息网络的推荐方法多存在可解释性缺失和稀疏不一致性问题,导致无法充分挖掘用户潜在的偏好特征,且有效地进行特征融合。因此,提出了一种在异质信息网络中融合网络嵌入的注意力偏好推荐方法(MFFHINE);利用对称元路径在刻画对象间语义关系上的优势,在对称元路径上随机游走进行网络嵌入来学习用户偏好特征。采用基于注意力机制的偏好权重融合策略将学习到的各个偏好特征有效融合,并将其集成到矩阵分解模型中。通过联合优化矩阵分解模型和融合函数,以进行最终的评分预测任务。在Douban和Yelp真实大规模数据集上对提出的算法进行实验分析。通过对各基准算法进行横向性能比较,在训练集比例、元路径设置、潜在因子维度等方面进行纵向比较。实验结果表明,MFFHINE性能提升显著。

关键词: 网络嵌入, 异质融合, 推荐系统, 注意力机制

Abstract:

Heterogeneous information network based recommendation methods have been a research focus in current data mining field. However, most of the traditional HIN-based recommendation methods exist sparse inconsistency and lack of interpretability, which cannot adequately explore the user’s potential preference features and effectively integrate features. Therefore, the paper proposes an attention preference recommendation method with Fusing Heterogeneous Information Network Embedding(named as MFFHINE). Symmetric meta path is apt at characterizing the semantic relationships between objects, hence the network embedding method based on random walks on each symmetric meta path is designed to learn preference features of users. Then the preference weights fusion strategy based on attention mechanism is considered to fuse these learned preference features and then integrate them into the extended matrix factorization model. In this way, the matrix factorization model and the fusion function are jointly optimized to perform the score prediction task. Finally, compared with other benchmark algorithms on Douban and Yelp real large-scale datasets, the algorithm experiments analyze on the training set ratio, meta path settings, latent factor dimensions. Experimental results show that the proposed MFFHINE has been improved more significantly than the state of art algorithms.

Key words: network embedding, heterogeneous fusion, recommendation system, attention mechanism