计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 144-150.DOI: 10.3778/j.issn.1002-8331.1912-0394
张蝶依,尹立杰
ZHANG Dieyi, YIN Lijie
摘要:
Metapath2vec和Metapath2vec++异质网络表示学习方法只保持了网络原有的拓扑结构,没有考虑异质网络自身存在的聚类结构,从而降低网络中节点表示的准确性。针对此问题,基于元路径随机游走策略提出两种保持聚类结构的异质网络表示学习模型:HINSC和HINSC++。模型将网络中节点的one-hot表示作为前馈神经网络的输入,经过隐层的非线性变换,使其在输出层保持网络中节点的近邻拓扑结构和聚类结构,利用随机梯度下降算法学习异质网络节点的低维表示。在两个真实异质网络上的实验结果表明:相比Metapath2vec和Metapath2vec++,HINSC和HINSC++学到的表示在聚类任务上NMI值提高12.46%~26.22%,在分类任务上Macro-F1、Micro-F1值提高9.32%~17.24%。