计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (7): 151-157.DOI: 10.3778/j.issn.1002-8331.1912-0430
杨倩,顾磊
YANG Qian, GU Lei
摘要:
中文命名实体识别是中文信息处理领域中的一项基本任务,能够为关系抽取、实体链接和知识图谱提供技术支持。与传统命名实体识别方法相比,基于双向长短期记忆(BiLSTM)神经网络模型在中文命名实体识别任务中获得了较好的效果。针对基于字词联合的BiLSTM-CRF模型存在特征提取不够准确的缺陷,在其基础上,引入Gated去噪机制,对输入字向量进行微调,自动学习过滤或者减少文本中不重要的字信息,保留对命名实体识别任务更有用的信息,进而提高命名实体的识别率。在Resume和Weibo数据集上的测试结果表明,该方法有效地提高了中文命名实体识别的效果。