计算机工程与应用 ›› 2009, Vol. 45 ›› Issue (20): 42-44.DOI: 10.3778/j.issn.1002-8331.2009.20.012

• 研究、探讨 • 上一篇    下一篇

优化博弈问题评估函数参数的自适应遗传算法

王秀坤,刘健男   

  1. 大连理工大学 计算机系,辽宁 大连 116023
  • 收稿日期:2008-10-07 修回日期:2009-01-04 出版日期:2009-07-11 发布日期:2009-07-11
  • 通讯作者: 王秀坤

Adaptive genetic algorithm for evaluation function parameters optimization in game problem

WANG Xiu-kun,LIU Jian-nan   

  1. Department of Computer,Dalian University of Technology,Dalian,Liaoning 116023,China
  • Received:2008-10-07 Revised:2009-01-04 Online:2009-07-11 Published:2009-07-11
  • Contact: WANG Xiu-kun

摘要: 使用自适应遗传算法对五子棋博弈问题中的评估函数参数进行训练优化。引入陪练算法对训练进行指导。给出了一种新的适应度函数计算方法,该方法避免了在训练过程中种群个体之间的大量竞赛,从而节省了训练时间。实验结果表明训练得到的参数组成的评估函数优于陪练算法中的评估函数。

关键词: 自适应遗传算法, 博弈, 评估函数

Abstract:

Adaptive Genetic Algorithm(AGA) is used to optimize the parameters of evaluation function in the gobang game problem.The tutorial algorithm is introduced to guide the training.A new fitness function is given which can avoid large amount of competitions among individuals during the training process so as to save training time.The experiment results show that the evaluation functions composed of parameters obtained from training are better than those in tutorial algorithms.

Key words: adaptive genetic algorithm, game, evaluation function