计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (16): 197-202.DOI: 10.3778/j.issn.1002-8331.2009-0295
贺照蒙,孔广黔,吴云
HE Zhaomeng, KONG Guangqian, WU Yun
摘要:
针对目前室内场景语义分割网络无法很好融合图像的RGB信息和深度信息的问题,提出一种改进的室内场景语义分割网络。为使网络能够有选择性地融合图像的深度特征和RGB特征,引入注意力机制的思想,设计了特征融合模块。该模块能够根据深度特征图和RGB特征图的特点,学习性地调整网络参数,更有效地对深度特征和RGB特征进行融合;同时使用多尺度联合训练,加速网络收敛,提高分割准确率。通过在SUNRGB-D和NYUDV2数据集上验证,相比于包含深度敏感全连接条件随机场的RGB-D全卷积神经网络(DFCN-DCRF)、深度感知卷积神经网络(Depth-aware CNN)、多路径精炼网络(RefineNet)等目前主流的语义分割网络,所提网络具有更高的分割精度,平均交并比(mIoU)分别达到46.6%和48.0%。