计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (18): 171-176.DOI: 10.3778/j.issn.1002-8331.1908-0016
张婧,周明全,耿国华
ZHANG Jing, ZHOU Mingquan, GENG Guohua
摘要:
为了实现在深度学习中能够端到端表示点云模型,提出基于八叉树和K-D树(OctKD)的点云数据表示方法。该方法将无组织的点云转换为体素空间,在体素空间对三维模型进行八叉树剖分,改进了八叉树编码方式;构建节点间的邻接关系,在GPU端并行构建八叉树;为了克服八叉树编码检索效率低的问题,采用三维K-D树索引单个三维空间点。实验结果表明该方法能够真实反映模型本身的细节特征,提高了点云模型的构造时间和检索效率。这种新的数据结构实现将点云转换为卷积神经网络可以接收的数据形式。