计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (18): 81-88.DOI: 10.3778/j.issn.1002-8331.1812-0362
余恩泽,努尔布力,于清
YU Enze, Nurbol, YU Qing
摘要: 针对钓鱼攻击者常用的伪造HTTPS网站以及其他混淆技术,借鉴了目前主流基于机器学习以及规则匹配的检测钓鱼网站的方法RMLR和PhishDef,增加对网页文本关键字和网页子链接等信息进行特征提取的过程,提出了Nmap-RF分类方法。Nmap-RF是基于规则匹配和随机森林方法的集成钓鱼网站检测方法。根据网页协议对网站进行预过滤,若判定其为钓鱼网站则省略后续特征提取步骤。否则以文本关键字置信度,网页子链接置信度,钓鱼类词汇相似度以及网页PageRank作为关键特征,以常见URL、Whois、DNS信息和网页标签信息作为辅助特征,经过随机森林分类模型判断后给出最终的分类结果。实验证明,Nmap-RF集成方法可以在平均9~10 μs的时间内对钓鱼网页进行检测,且可以过滤掉98.4%的不合法页面,平均总精度可达99.6%。