计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (12): 117-123.DOI: 10.3778/j.issn.1002-8331.1812-0079
张 璞1,柴变芳1,张 静1,李文斌2
ZHANG Pu1, CHAI Bianfang1, ZHANG Jing1, LI Wenbin2
摘要: 网络表示学习是一个重要的研究课题,其目的是将高维的属性网络表示为低维稠密的向量,为下一步任务提供有效特征表示。最近提出的属性网络表示学习模型SNE(Social Network Embedding)同时使用网络结构与属性信息学习网络节点表示,但该模型属于无监督模型,不能充分利用一些容易获取的先验信息来提高所学特征表示的质量。基于上述考虑提出了一种半监督属性网络表示学习方法SSNE(Semi-supervised Social Network Embedding),该方法以属性网络和少量节点先验作为前馈神经网络输入,经过多个隐层非线性变换,在输出层通过保持网络链接结构和少量节点先验,学习最优化的节点表示。在四个真实属性网络和两个人工属性网络上,同现有主流方法进行对比,结果表明本方法学到的表示,在聚类和分类任务上具有较好的性能。