计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (8): 17-26.DOI: 10.3778/j.issn.1002-8331.1812-0004

• 热点与综述 • 上一篇    下一篇

蛋白质功能模块检测的聚类方法综述

霍思聪1,黎  英2   

  1. 1.南宁师范大学 计算机与信息工程学院,南宁 530299
    2.南宁师范大学 广西高校科学计算与智能信息处理重点实验室,南宁 530299
  • 出版日期:2019-04-15 发布日期:2019-04-15

Research Progress of Functional Module Detection for Protein-Protein Interaction Networks

HUO Sicong1, LI Ying2   

  1. 1.School of Computer and Information Engineering, Nanning Normal University, Nanning 530299, China
    2.Guangxi Colleges and Universities Key Laboratory of Scientific Computing and Intelligent Information Processing, Nanning Normal University, Nanning 530299, China
  • Online:2019-04-15 Published:2019-04-15

摘要: 在蛋白质相互作用(Protein-Protein Interaction,PPI)网络中检测蛋白质功能模块有助于预测未知蛋白质的功能模块。随着蛋白质相互作用有效数据迅速增长,如何通过PPI网络获得有效的蛋白质功能模块成为最大挑战。阐述PPI网络的发展及现状,通过对当前蛋白质功能模块检测算法进行归纳总结,把它们分为单元聚类和多元聚类,并对每类的代表性方法进行详细阐述;讨论蛋白质相互作用网络功能模块检测研究所面临的挑战及未来研究方向。

关键词: 蛋白质相互作用, 蛋白质功能模块, 检测, 聚类

Abstract: Detection of protein functional modules in Protein-Protein Interaction(PPI) networks is helpful to predict the functional modules of unknown proteins. With the rapid growth of effective data of protein interaction, how to obtain effective protein functional modules through PPI network has become the biggest challenge. This paper describes the development and current situation of PPI network research, then summarizes the current detection algorithms of protein functional modules, divides them into unit clustering and multivariate clustering, and elaborates the representative methods of each category in detail. Finally, it discusses the challenges and the future research directions  of the PPI network functional module detection research.

Key words: protein-protein interaction, protein function module, detecting, clustering