计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (10): 244-249.DOI: 10.3778/j.issn.1002-8331.1803-0142
陈 毅1,3,4,符 磊2,3,4,代云霞1,张 剑3,4
CHEN Yi1,3,4, FU Lei2,3,4, DAI Yunxia1, ZHANG Jian3,4
摘要: 针对基于规则和统计的传统中文简历解析方法效率低、成本高、泛化能力差的缺点,提出一种基于特征融合的中文简历解析方法,即级联Word2Vec生成的词向量和用BLSTM(Bidirectional Long Short-Term Memory)建模字序列生成的词向量,然后再结合BLSTM和CRF(Conditional Random Fields)对中文简历进行解析(BLSTM-CRF)。为了提高中文简历解析的效率,级联包含字序列信息的词向量和用Word2Vec生成的词向量,融合成一个新的词向量表示;再由BLSTM强大的学习能力融合词的上下文信息,输出所有可能标签序列的分值给CRF层;再由CRF引入标签之间约束关系求解最优序列。利用梯度下降算法训练神经网络,使用预先训练的词向量和Dropout优化神经网络,最终完成对中文简历的解析工作。实验结果表明,所提的特征融合方法优于传统的简历解析方法。