计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (10): 240-243.DOI: 10.3778/j.issn.1002-8331.1801-0141
李少伟1,王胜正2
LI Shaowei1, WANG Shengzheng2
摘要: 移动机器人定位已成为机器人研究的重要任务。提出基于递归卷积神经网络的移动机器人定位(Recurrent Convolutional Neural Networks-Based Mobile Robot Localization,RCNN-MRL)算法。递归卷积神经网络(Recurrent Convolutional Neural Networks,RCNN)结合卷积神经网络(Convolutional Neural Networks,CNN)和递归神经网络(Recurrent Neural Networks,RNN)的特性,并依据机器人上嵌入的照相机拍摄的第一人称视角图像,RCNN-MRL算法利用RCNN实现自主定位。具体而言,先通过RCNN有效地处理多个连续图像,再利用RCNN作为回归模型,进而估计机器人位置。同时,设计双轮机器人移动,获取多个时间序列图像信息。最后,依据双轮机器人随机移动建立仿真环境,分析机器人定位性能。实验数据表明,提出的RCNN模型能够实现自主定位。