[1] LI S Y, WANG Z W, LYU Y C, et al. Improved YOLOv5s-based algorithm for foreign object intrusion detection on overhead transmission lines[J]. Energy Reports, 2024, 11: 6083-6093.
[2] MENG C, WANG Z, SHI L, et al. SDRC-YOLO: a novel foreign object intrusion detection algorithm in railway scenarios[J]. Electronics, 2023, 12(5): 1256.
[3] DING X W, CAI X N, ZHANG Z Y, et al. Railway foreign object intrusion detection based on deep learning[C]//Proceedings of the International Conference on Computer Engineering and Artificial Intelligence. Piscataway: IEEE, 2022: 735-739.
[4] YE T, ZHANG J, ZHAO Z, et al. Foreign body detection in rail transit based on a multi-mode feature-enhanced convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18051-18063.
[5] CHEN Y K, LIU J X, PENG L Y, et al. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013.
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
[7] KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4396-4405.
[8] 高欣宇, 杜方, 宋丽娟. 基于扩散模型的文本图像生成对比研究综述[J]. 计算机工程与应用, 2024, 60(24): 44-64.
GAO X Y, DU F, SONG L J. Comparative review of text-to-image generation techniques based on diffusion models[J]. Computer Engineering and Applications, 2024, 60(24): 44-64.
[9] LI G, LI X, WANG Y, et al. PseCo: pseudo labeling and consistency training for semi-supervised object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 457-472.
[10] XU M, ZHANG Z, LIU W, ET AL. End-to-end semi-supervised object detection with soft teacher[J]. arXiv:2106. 09018, 2021.
[11] DING J G, YE C, WANG H Z, et al. Foreign bodies detector based on DETR for high-resolution X-ray images of textiles[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-10.
[12] ZHAO H, WANG J K, DAI D Y, et al. D-NMS: a dynamic NMS network for general object detection[J]. Neurocomputing, 2022, 512: 225-234.
[13] CHERNOV A V, BUTAKOVA M A, KARPENKO E V. Security incident detection technique for multilevel intelligent control systems on railway transport in Russia[C]//Proceedings of the 23rd Telecommunications Forum Telfor. Piscataway: IEEE, 2015: 1-4.
[14] BHANDARI B, PARK G. Development of a real-time security management system for restricted access areas using computer vision and deep learning[J]. Journal of Transportation Safety & Security, 2022, 14(4): 655-670.
[15] ZHANG B L, YANG Q, CHEN F K, et al. A real-time foreign object detection method based on deep learning in complex open railway environments[J]. Journal of Real-Time Image Processing, 2024, 21(5): 166.
[16] 徐岩, 陶慧青, 虎丽丽. 基于Faster R-CNN 网络模型的铁路异物侵限检测算法研究[J]. 铁道学报, 2020, 42(5): 91-98.
XU Y, TAO H Q, HU L L. Railway foreign body intrusion detection based on faster R-CNN network model[J]. Journal of the China Railway Society, 2020, 42(5): 91-98.
[17] WEI T, CHEN D, ZHOU W, et al. E2Style: improve the efficiency and effectiveness of StyleGAN inversion[J]. IEEE Transactions on Image Processing, 2022, 31: 3267-3280.
[18] KIM G, KWON T, YE J C. DiffusionCLIP: text-guided diffusion models for robust image manipulation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2416-2425.
[19] RUIZ N, LI Y Z, JAMPANI V, et al. DreamBooth: fine-tuning text-to-image diffusion models for subject-driven generation[J]. arXiv:2208.12242, 2022.
[20] KAWAR B, ZADA S, LANG O, et al. Imagic: text-based real image editing with diffusion models[J]. arXiv:2210. 09276, 2022.
[21] AVRAHAMI O, LISCHINSKI D, FRIED O. Blended diffusion for text-driven editing of natural images[J]. arXiv: 2111.14818, 2011.
[22] YANG B, GU S, ZHANG B, et al. Paint by example: exemplar-based image editing with diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 18381-18391.
[23] 董静, 耿达, 郭迎港, 等. 室内环境下基于R-CNN的光照自适应物体检测[J]. 计算机工程与应用, 2019, 55(2): 168-173.
DONG J, GENG D, GUO Y G, et al. Illumination adaptive object detection based on R-CNN under indoor environment[J]. Computer Engineering and Applications, 2019, 55(2): 168-173.
[24] GAO D, KANG Y, WANG Y. Faster R-CNN railway foreign body detection algorithm combined with attention between channels[C]//Proceedings of the International Conference on Signal Processing and Communication Technology, 2022, 12178: 480-487.
[25] CHOI J Y, HAN J M. Deep learning (Fast R-CNN)-based evaluation of rail surface defects[J]. Applied Sciences, 2024, 14(5): 1874.
[26] ZHU W, ZHANG H, EASTWOOD J, et al. Concrete crack detection using lightweight attention feature fusion single shot multibox detector[J]. Knowledge-Based Systems, 2023, 261: 110216.
[27] ZHANG Z, CHEN P, HUANG Y, et al. Railway obstacle intrusion warning mechanism integrating YOLO-based detection and risk assessment[J]. Journal of Industrial Information Integration, 2024, 38: 100571.
[28] ZHANG H, LI F, LIU S, et al. DINO: DETR with improved DeNoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[29] LI M L, XU R C, WANG S H, et al. CLIP-Event: connecting text and images with event structures[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[30] ROMBACH R, BLATTENBERGER A, ESSER P, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
[31] WANG A, CHEN H, LIU L, et al. YOLOv10: Real-time end-to-end object detection[C]//Advances in Neural Information Processing Systems, 2024: 107984-108011.
[32] WANG P, CAI Z W, YANG H, et al. Omni-DETR: omni-supervised object detection with transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9357-9366. |