[1] HILAL W, GADSDEN S, YAWNEY J. Financial fraud: a review of anomaly detection techniques and recent advances[J]. Expert Systems with Applications, 2022, 193: 116429.
[2] CAO L. AI in finance: challenges, techniques, and opportunities[J]. ACM Computing Surveys (CSUR), 2022, 55(3): 1-38.
[3] CHEN T, TSOURAKAKIS C. Antibenford subgraphs: unsupervised anomaly detection in financial networks[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 2762-2770.
[4] REN J. Research on financial investment decision based on artificial intelligence algorithm[J]. IEEE Sensors Journal, 2021, 21(22): 25190 - 25197.
[5] AHMED M, MAHMOOD A, ISLAM M. A survey of anomaly detection techniques in financial domain[J]. Future Generation Computer Systems, 2016, 55: 278-288.
[6] BURNS N, KEDIA S. The impact of performance-based compensation on misreporting[J]. Journal of Financial Economics, 2006, 79(1): 35-67.
[7] CHENG X, LIU S, SUN X, et al. Combating emerging financial risks in the big data era: a perspective review[J]. Fundamental Research, 2021, 1(5): 595-606.
[8] CHEN F, WANG Y, WANG B, et al. Graph representation learning: a survey[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9: e15.
[9] GAO J, RIBEIRO B. On the equivalence between temporal and static graph representations for observational predictions[J]. arXiv:2103.07016, 2021.
[10] DONG Y, CHAWLA N, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 135-144.
[11] 袁立宁, 李欣, 王晓冬, 等. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(1): 59-87.
YUAN L N, LI X, WANG X D, et al. Graph embedding models: a survey[J]. Journal of Frontiers of Compute Science and Technology, 2022, 16(1): 59-87.
[12] BARROS C, MENDONCA M, VIEIRA A, et al. A survey on embedding dynamic graphs[J]. ACM Computing Surveys, 2021, 55(1): 1-37.
[13] YIN Y, JI L, ZHANG J, et al. DHNE: network representation learning method for dynamic heterogeneous networks[J]. IEEE Access, 2019, 7: 134782-134792.
[14] ZHOU L, YANG Y, REN X, et al. Dynamic network embedding by modeling triadic closure process[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018.
[15] WANG X, LU Y, SHI C, et al. Dynamic heterogeneous information network embedding with meta-path based proximity[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(3): 1117-1132.
[16] GUO X, ZHOU B, SKIENA S. Subset node representation learning over large dynamic graphs[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021: 516-526.
[17] XU M. Understanding graph embedding methods and their applications[J]. SIAM Review, 2021, 63(4): 825-853.
[18] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94.
[19] CAI H, ZHENG V, CHANG K. A comprehensive survey of graph embedding: problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
[20] 罗世杰, 吕文韬, 李凡, 等. 融合拓扑和属性的动态网络链路预测方法[J]. 计算机工程与应用, 2023, 59(5): 122-130.
LUO S J, LYU W T, LI F, et al. Dynamic network link prediction method for fusion topology and attributes[J]. Computer Engineering and Applications, 2023, 59(5): 122-130.
[21] GAO C, ZHU J, ZHANG F, et al. A novel representation learning for dynamic graphs based on graph convolutional networks[J]. IEEE Transactions on Cybernetics, 2022, 53(6): 3599-3612.
[22] WANG W, XIA F, NIE H, et al. Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(6): 3567-3576.
[23] GAO H, LV C, ZHANG T, et al. A structure constraint matrix factorization framework for human behavior segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(12): 12978-12988.
[24] 卢志刚, 陈倩. 动态供应链网络中企业合作关系的链路预测[J]. 计算机工程与应用, 2022, 58(2): 265-273.
LU Z G, CHEN Q. Link prediction of enterprise cooperation relationship in dynamic supply chain network[J]. Computer Engineering and Applications, 2022, 58(2): 265-273.
[25] TAHERI A, GIMPEL K, BERGER-WOLF T. Learning to represent the evolution of dynamic graphs with recurrent models[C]//Companion Proceedings of the 2019 World Wide Web Conference, 2019: 301-307.
[26] DU L, WANG Y, SONG G, et al. Dynamic network embedding: an extended approach for skip-gram based network embedding[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, 2018: 2086-2092.
[27] XIE Y, YU B, LV S, et al. A survey on heterogeneous network representation learning[J]. Pattern Recognition, 2021, 116: 107936.
[28] BIAN R, KOH Y, DOBBIE G, et al. Network embedding and change modeling in dynamic heterogeneous networks[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 861-864. |