[1] Welcome to Tor metrics[EB/OL]. [2023-06-27]. https://metrics.torproject.org/.
[2] DINGLEDINE R, MATHEWSON N, SYVERSON P F. Tor: the second-generation onion router[C]//Proceedings of the USENIX Security Symposium, 2004: 303-320.
[3] 罗军舟, 杨明, 凌振, 等. 匿名通信与暗网研究综述[J]. 计算机研究与发展, 2019, 56(1): 103-130.
LUO J Z, YANG M, LING Z, et al. Anonymous communation and darknet: a survey[J]. Journal of Computer Research and Development, 2019, 56(1): 103-130.
[4] 罗俊. 滋蔓的暗网及网络空间治理新挑战[J]. 学术论坛, 2020, 43(5): 1-12.
LUO J. The sprawling dark Web and new challenges in cyberspace governance[J]. Academic Forum, 2020, 43(5): 1-12.
[5] 孙学良, 黄安欣, 罗夏朴, 等. 针对Tor的网页指纹识别研究综述[J]. 计算机研究与发展, 2021, 58(8): 1773-1788.
SUN X L, HUANG A X, LUO X P, et al. Webpage fingerprinting identification on Tor: a survey[J]. Journal of Computer Research and Development, 2021, 58(8): 1773-1788.
[6] HINTZ A. Fingerprinting websites using traffic analysis[C]//Proceedings of the International Workshop on Privacy Enhancing Technologies. Berlin, Heidelberg: Springer, 2002: 171-178.
[7] LIU P, HE L, LI Z. A survey on deep learning for website fingerprinting attacks and defenses[J]. IEEE Access, 2023, 11: 26033-26047.
[8] RIMMER V, PREUVENEERS D, JUAREZ M, et al. Automated website fingerprinting through deep learning[C]//Proceedings of the 25th Annual Network and Distributed System Security Symposium, 2018.
[9] SIRINAM P, IMANI M, JUAREZ M, et al. Deep fingerprinting: undermining website fingerprinting defenses with deep learning[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 2018: 1928-1943.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[11] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[12] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[C]//Proceedings of the International Conference on Learning Representations, 2021.
[13] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[14] HERRMANN D, WENDOLSKY R, FEDERRATH H. Website fingerprinting: attacking popular privacy enhancing technologies with the multinomial Na?ve-Bayes classifier[C]//Proceedings of the 2009 ACM Workshop on Cloud Computing Security, 2009: 31-42.
[15] PANCHENKO A, NIESSEN L, ZINNEN A, et al. Website fingerprinting in onion routing based anonymization networks[C]//Proceedings of the 10th Annual ACM Workshop on Privacy in the ELectronic Society, 2011: 103-114.
[16] CAI X, ZHANG X C, JOSHI B, et al. Touching from a distance: website fingerprinting attacks and defenses[C]//Proceedings of the 2012 ACM Conference on Computer and Communications Security, 2012: 605-616.
[17] ABE K, GOTO S. Fingerprinting attack on Tor anonymity using deep learning[J]. Proceedings of the Asia-Pacific Advanced Network, 2016, 42: 15-20.
[18] BHAT S, LU D, KWON A, et al. Var-CNN: a data-efficient website fingerprinting attack based on deep learning[J]. Proceedings on Privacy Enhancing Technologies, 2019, 4: 292-310.
[19] WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking (ICOIN), 2017: 712-717.
[20] HABIBI LASHKARI A, KAUR G, RAHALI A. DidarkNet: a contemporary approach to detect and characterize the darknet traffic using deep image learning[C]//Proceedings of the 2020 the 10th International Conference on Communication and Network Security, 2020: 1-13.
[21] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[22] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[23] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[24] LEE S H, LEE S, SONG B C. Vision transformer for small-size datasets[J]. arXiv:2112.13492, 2021. |