[1] JIANG L, YU M, MING Z, et al. Target-dependent Twitter sentiment classification[C]//Proceedings of the Meeting of the Association for Computational Linguistics, 2011: 151-160.
[2] ZHOU J, ZHAO J, HUANG J X, et al. MASAD: a large-scale dataset for multimodal aspect-based sentiment analysis [J]. Neurocomputing, 2021, 455: 47-58.
[3] XU N, MAO W J, CHEN G D. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 371-378.
[4] YU J F, JIANG J. Adapting BERT for target-oriented multimodal sentiment classification[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 5408-5414.
[5] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st Conference on Neural Information Processing Systems, 2017: 6000-6010.
[6] YU J F, CHEN K, XIA R. Hierarchical interactive multimodal transformer for aspect-based multimodal sentiment analysis[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 1966-1978.
[7] YU Z, YU J, XIANG C C, et al. Beyond bilinear: generalized multimodal factorized high-order pooling for visual question answering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 5947-5959.
[8] PANG B, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques[C]//Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing, 2002: 79-86.
[9] READ J. Using emoticons to reduce dependency in machine learning techniques for sentiment classification[C]//Proceedings of the Student Research Workshop at the Meeting of the Association for Computational Linguistics, Ann Arbor, 2005: 43-48.
[10] WAGNER J, ARORA P, CORTES S, et al. DCU: aspect-based polarity classification for SemEval task 4[C]//Proceedings of the 2014 International Conference on Computational Linguistics, 2014.
[11] XU H, ZHANG F, WANG W. Implicit feature identification in Chinese reviews using explicit topic mining model[J]. Knowledge-Based Systems, 2015, 76: 166-175.
[12] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[13] TANG D Y, QIN B, FENG X C, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, 2016: 3298-3307.
[14] WANG Y, HUANG M, ZHAO L. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 606-615.
[15] MA D H, LI S J, ZHANG X D, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 4068-4074.
[16] ZHANG C, LI Q C, SONG D W. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, 2019: 4568-4578.
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, 2017.
[18] 李雪莲, 王碧, 李立鑫, 等. 融合抽象语义表示和依存语法的方面级情感分析[J]. 数据分析与知识发现, 2024, 8(1): 55-68.
LI X L, WANG B, LI L X, et al. Integrating abstract meaning representation and dependency grammar for aspect-based sentiment analysis[J]. Data Analysis and Knowledge Discovery, 2024, 8(1): 55-68.
[19] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistic, Minneapolis, 2019: 4171-4186.
[20] 刘路路, 杨燕, 王杰. ABAFN: 面向多模态的方面级情感分析模型[J]. 计算机工程与应用, 2022, 58(10): 193-199.
LIU L L, YANG Y, WANG J. ABAFN: aspect-based sentiment analysis model for multimodal[J]. Computer Engineering and Applications, 2022, 58(10): 193-199.
[21] YU J F, JIANG J, XIA R. Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification[J]. IEEE/ACM Transactions on Audio, Speech and Language Processing, 2020, 28: 429-439.
[22] YANG L, NA J C, YU J F. Cross-modal multitask transformer for end-to-end multimodal aspect-based sentiment analysis[J]. Information Processing and Management, 2022, 59(5): 103038.
[23] JU X C, ZHANG D, XIAO R, et al. Joint multi-modal aspect-sentiment analysis with auxiliary cross-modal relation detection[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021: 4395-4405.
[24] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[25] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[26] ADAM P, SAM G, SOUMITH C, et al. Automatic differentiation in PyTorch[C]//Proceedings of the 31st Conference on Neural Information Processing Systems, 2017.
[27] KINGMA D P, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations, 2015.
[28] CHEN P, SUN Z Q, BING L D, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, 2017: 452-461.
[29] YU J F, WANG J M, XIA R, et al. Targeted multimodal sentiment classification based on coarse-to-fine grained image-target matching[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, 2022: 4482-4488. |