[1] 陈伟光, 聂世坤. 构建新发展格局: 基于国家治理与全球治理互动的逻辑[J]. 学术研究, 2022(1): 88-95.
CHEN W G, NIE S K. Constructing a new development pattern: based on the logic of interaction between national governance and global governance[J]. Academic Research, 2022(1): 88-95.
[2] 肖艳. 零担物流市场变革下智能物流与供应链一体化平台创新研究[J]. 商业经济研究, 2019(8): 101-103.
XIAO Y. Research on the innovation of intelligent logistics and supply chain integration platform under the change of LTL logistics market[J]. Business and Economic Research, 2019(8): 101-103.
[3] 郑永有, 杜艳. 基于灰色GM (1, 1) 模型的上海市航空物流预测研究[J]. 中国储运, 2022(10): 76-77.
ZHENG Y Y, DU Y. Research on Shanghai air logistics forecasting based on gray GM(1, 1) model[J]. China Storage and Transportation, 2022(10): 76-77.
[4] 冯杰. 基于支持向量回归机的区域物流需求预测研究[J]. 广西质量监督导报, 2021(3): 165-166.
FENG J. Research on regional logistics demand forecasting based on support vector regression machine[J]. Guangxi Quality Supervision Guide Periodical, 2021(3): 165-166.
[5] 杨耀红, 刘德福, 韩兴忠, 等. 基于LSTM-GRU模型的TBM掘进参数时序预测研究[J]. 水力发电, 2023, 49(2): 78-84.
YANG Y H, LIU D F, HAN X Z, et al. Research on time series prediction of TBM tunneling parameters based on LSTM-GRU model[J]. Water Power, 2023, 49(2): 78-84.
[6] 李芳. 基于适应性Lasso+GM(1, 1)模型的湖南物流业预测[J]. 应用数学进展, 2022, 11(1): 566-572.
LI F. Forecast of hunan logistics industry based on adaptive Lasso+GM(1,1) model[J]. Advances in Applied Mathematics, 2022, 11(1): 566-572.
[7] YAN P, ZHANG L, FENG Z, et al. Research on logistics demand forecast of port based on combined model[J]. Journal of Physics: Conference Series, 2019, 1168(3): 032116.
[8] WEN C , YANG J , ZHANG Z , et al. Prediction of the development trend of the “Internet+” logistics industry under the “Belt and Road” strategy[J]. Computational Intelligence and Neuroscience, 2022, 2022: 4630146.
[9] 杨建成. ARIMA-SVM的物流需求预测模型[J]. 现代电子技术, 2018, 41(9): 182-186.
YANG J C. Logistics demand forecasting model based on ARIMA?SVM[J]. Modern Electronics Technique, 2018, 41(9): 182-186.
[10] YIN G, PENG J. Prediction of regional logistics heat and coupling development between regional logistics and economic systems[J]. Discrete Dynamics in Nature and Society, 2021, 2021: 1-9.
[11] HUANG L, XIE G, ZHAO W, et al. Regional logistics demand forecasting: a BP neural network approach[J]. Complex & Intelligent Systems, 2021: 1-16.
[12] LU S. Research on GDP forecast analysis combining BP neural network and ARIMA model[J]. Computational Intelligence and Neuroscience, 2021: 1-10.
[13] 张国玲, 徐学红. 一种基于ARIMA-BPNN的物流需求预测模型[J]. 控制工程, 2017, 24(5): 958-962.
ZHANG G L, XU X H. A logistics demand prediction based on ARIMA-BPNN[J]. Control Engineering of China, 2017, 24(5): 958-962.
[14] 王逸文, 王维莉. 基于LSTM-RELM组合模型的电商GMV预测研究[J]. 计算机工程与应用, 2023, 59(10): 321-327.
WANG Y W, WANG W L. Research on GMV prediction of E-commerce based on LSTM-RELM combination model[J]. Computer Engineering and Applications, 2023, 59(10): 321-327.
[15] 张兴锐, 刘畅, 陈哲, 等. 基于时空图卷积网络的机场地铁短时客流预测[J]. 计算机工程与应用, 2023, 59(8): 322-330.
ZHANG X R, LIU C, CHEN Z, et al. Short-term passenger flow prediction of airport subway based on spatio-temporal graph convolutional network[J]. Computer Engineering and Applications, 2023, 59(8): 322-330.
[16] 郑长伟, 薛哲, 梁美玉, 等. 基于时空信息增强的科技论文主题趋势预测[J]. 计算机工程与应用, 2023, 59(14): 86-93.
ZHENG C W, XUE Z, LIANG M Y, et al. Topic trend prediction of scientific papers based on spatiotemporal information enhancement[J]. Computer Engineering and Applications, 2023, 59(14): 86-93.
[17] 王庆荣, 周禹潼, 朱昌锋, 等. 时空图卷积网络下的路网交通事故风险预测[J]. 计算机工程与应用, 2023, 59(13): 266-272.
WANG Q R, ZHOU Y T, ZHU C F, et al. Road network traffic accident risk prediction based on spatio-temporal graph convolution network[J]. Computer Engineering and Applications, 2023, 59(13): 266-272.
[18] CAI B, WANG Y, HUANG C, et al. GLSNN network: a multi-scale spatiotemporal prediction model for urban traffic flow[J]. Sensors, 2022, 22(22): 8880.
[19] 文家璇, 王苗, 刘济. 基于时序分解和随机森林的时间序列多步预测算法[J]. 华东理工大学学报 (自然科学版), 2023, 49(6): 873-881.
WEN J X, WANG M, LIU J. Time series multi-step prediction algorithm based on time series decomposition and random forest[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2023, 49(6): 873-881.
[20] 赵然杭, 甘甜, 逄晓腾, 等. 基于时间序列分解的降雨数据挖掘与预测[J]. 中国农村水利水电, 2021(11): 116-122.
ZHAO R H, GAN T,PANG X T, et al. Rainfall data mining and forecasting based on time series decomposition[J]. China Rural Water and Hydropower, 2021(11): 116-122.
[21] 夏进, 王正群, 朱世明. 基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43(4): 1129-1135.
XIA J, WANG Z Q, ZHU S M. Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43(4): 1129-1135.
[22] 闫勇志, 沐年国. 基于CEEMDAN-VMD-LSTM的超高频金融时间序列预测[J]. 计算机时代, 2023(5): 102-108.
YAN Y Z, MU N G. UHF financial time series predicting based on CEEMDAN-VMD-LSTM[J]. Computer Era, 2023(5): 102-108.
[23] 邓德军, 徐洪珍, 韦诗玥. E-V-ALSTM模型的股价预测 [J]. 计算机工程与应用, 2023, 59(6): 101-112.
DENG D J, XU H Z, WEI S Y. Stock price prediction based on E-V-ALSTM model[J]. Computer Engineering and Applications, 2023, 59(6): 101-112.
[24] 孙庆港, 王呈. 改进LSTM-AE算法的电梯知识库故障征兆预测[J]. 计算机工程与应用, 2023, 59(7): 311-318.
SUN Q G, WANG C. Prediction of fault symptoms in elevator knowledge base based on improved LSTM-AE algorithm[J]. Computer Engineering and Applications, 2023, 59(7): 311-318.
[25] GOZUYILMAZ S, KUNDAKCIOGLU O E. Mathematical optimization for time series decomposition[J]. OR Spectrum, 2021, 43(3): 733-758.
[26] 毛远宏, 孙琛琛, 徐鲁豫, 等. 基于深度学习的时间序列预测方法综述[J]. 微电子学与计算机, 2023, 40(4): 8-17.
MAO Y H, SUN C C, XU L Y, et al. A survey of time series forecasting methods based on deep learning[J]. Microelectronics & Computer, 2023, 40(4): 8-17.
[27] JIN B, ZENG G, LU Z, et al. Hybrid LSTM—BPNN-to-BPNN model considering multi-source information for forecasting medium-and long-term electricity peak load[J]. Energies, 2022, 15(20): 7584.
[28] ZHANG H, XIONG W, ZHANG R, et al. Prediction of gas consumption based on LSTM-BPNN hybrid model[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(4): 10665-10680. |