[1] LU Y Y, XU Z, WANG J X. Abnormal behavior recognition system based on improved CRNN model[C]//Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer Applications, 2022: 420-424.
[2] NAIK A J, GOPALAKRISHNA M T. Deep-violence: individual person violent activity detection in video[J]. Multimedia Tools and Applications, 2021, 80(12): 18365-18380.
[3] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 733-742.
[4] 李自强, 王正勇, 陈洪刚, 等. 基于外观和动作特征双预测模型的视频异常行为检测[J]. 计算机应用, 2021, 41(10): 2997-3003.
LI Z Q, WANG Z Y, CHEN H G, et al. Abnormal video behavior detection based on dual prediction model of appearance and motion features[J]. Computer Application, 2021, 41(10): 2997-3003.
[5] PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020: 14360-14369.
[6] ZHANG G, ETEMAD A. Holistic semi-supervised approaches for eeg representation learning[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, 2022: 1241-1245.
[7] SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 596-608.
[8] SESHADRI K, AKIN B, LAUDON J, et al. An evaluation of edge TPU accelerators for Convolutional neural networks[C]//Proceedings of the 2022 IEEE International Symposium on Workload Characterization, 2022: 79-91.
[9] SONG L, ZHANG S, YU G, et al. TACNet: transition-aware context network for spatio-temporal action detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 11979-11987.
[10] LIU S, LUO K, YE N, et al. OIFlow: occlusion-inpainting optical flow estimation by unsupervised learning[J]. IEEE Transactions on Image Processing, 2021, 30: 6420-6433.
[11] ZHAO J, SNOEK C. Dance with flow: two-in-one stream action detection[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2020: 9927-9936.
[12] ADAM A, RIVLIN E, SHIMSHONI I, et al. Robust real-time unusual event detection using multiple fixed-location monitors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(3): 555-560.
[13] XU D, RICCI E, YAN Y, et al. Learning deep representations of appearance and motion for anomalous event detection[J]. arXiv:1510.01553, 2015.
[14] WANG L, ZHOU F, LI Z, et al. Abnormal event detection in videos using hybrid spatio-temporal autoencoder[C]//Proceedings of the 2018 IEEE International Conference on Image Processing, 2018: 2276-2280.
[15] DEGARDIN B, NEVES J, LOPES V, et al. Generative adversarial graph Convolutional networks for human action synthesis[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 2753-2762.
[16] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection—a new baseline[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545.
[17] LEE S, KIM H G, RO Y M, et al. BMAN: bidirectional multi-scale aggregation networks for abnormal event detection[J]. IEEE Transactions on Image Processing, 2019, 29: 2395-2408.
[18] REISS T, HOSHEN Y. Attribute-based representations for accurate and interpretable video anomaly detection[J]. arXiv:2212.00789, 2022.
[19] LIU Z, NIE Y, LONG C, et al. A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, 2021: 13568-13577.
[20] DONG F, ZHANG Y, NIE X. Dual discriminator generative adversarial network for video anomaly detection[J]. IEEE Access, 2021, 8: 88170-88176.
[21] KUMAR A, RAWAT Y S. End-to-end semi-supervised learning for video action detection[C]//Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, 2022: 14680-14690.
[22] DUARTE K, RAWAT Y S, SHAH M. VideoCapsuleNet: a simplified network for action detection[J]. arXiv:1805.08162, 2018.
[23] MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 1975-1981.
[24] LU C, SHI J, JIA J. Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of the 2014 IEEE International Conference on Computer Vision, 2014: 2720-2727.
[25] LUO W, WEN L, GAO S. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 341-349.
[26] SIGURDSSON G A, AROL G V, WANG X, et al. Hollywood in homes: crowd sourcing data collection for activity understanding[J]. arXiv:1604.01753, 2016.
[27] DOSHI K, YILMAZ Y. Any-shot sequential anomaly detection in surveillance videos[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2020: 4037-4042.
[28] GEORGESCU M I, BARBALAU A, IONESCU R T, et al. Anomaly detection in video via self-supervised and multi-task learning[C]//Proceedings of the 2021 IEEE Computer Vision and Pattern Recognition, 2021: 12737-12747.
[29] KHAN F S, GEORGESCU M I, POPESCU M, et al. A background-agnostic framework with adversarial training for abnormal event detection in video[C]//Proceedings of the 2022 IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022: 4505-4523.
[30] ASTRID M, ZAHEER M Z, LEE S I. Synthetic temporal anomaly guided end-to-end video anomaly detection[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision Workshops, 2021: 207-214.
[31] YU J, LEE Y, YOW K C, et al. Abnormal event detection and localization via adversarial event prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3572-3586.
[32] PARK C, CHO M A, LEE M, et al. FastAno: fast anomaly detection via spatio-temporal patch transformation[C]//Proceedings of 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022: 1908-1918. |