Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (14): 26-36.DOI: 10.3778/j.issn.1002-8331.2312-0288
• Research Hotspots and Reviews • Previous Articles Next Articles
MA Yifan, WEI Dejian, FENG Yanyan, YU fengfan, LI Zhenjiang
Online:
2024-07-15
Published:
2024-07-15
马一凡,魏德健,冯妍妍,于丰帆,李振江
MA Yifan, WEI Dejian, FENG Yanyan, YU fengfan, LI Zhenjiang. Research Progress in Surface Electromyography Joint Continuous Motion Estimation[J]. Computer Engineering and Applications, 2024, 60(14): 26-36.
马一凡, 魏德健, 冯妍妍, 于丰帆, 李振江. 表面肌电关节连续运动估计的研究进展[J]. 计算机工程与应用, 2024, 60(14): 26-36.
[1] AI Q, LIU Z, MENG W, et al. Machine learning in robot assisted upper limb rehabilitation: a focused review[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 15(4): 2053-2063. [2] SHEN S, GU K, CHEN X R, et al. Movements classification of multi-channel sEMG based on CNN and stacking ensemble learning[J]. IEEE Access, 2019, 7: 137489-137500. [3] MENG Z, KANG J. Continuous joint velocity estimation using CNN-based deep learning for multi-DoF prosthetic wrist for activities of daily living[J]. Frontiers in Neurorobotics, 2023, 17. [4] LI H B, GUAN X R, Li Z, et al. Estimation of knee joint angle from surface EMG using multiple kernels relevance vector regression[J]. Sensors, 2023, 23(10): 4934. [5] HAKONEN M, PIITULAINEN H, VISALA A. Current state of digital signal processing in myoelectric interfaces and related applications[J]. Biomedical Signal Processing and Control, 2015, 18: 334-359. [6] BI L, FAN X A, LIU Y. EEG-based brain-controlled mobile robots: a survey[J]. IEEE Transactions on Human-Machine Systems, 2013, 43(2): 161-176. [7] USAKLI A B, GURKAN S, ALOISE F, et al. On the use of electrooculogram for efficient human computer interfaces[J]. Computational Intelligence and Neuroscience, 2010, 135629: 1-5. [8] ZHENG K, LIU S, YANG J, et al. sEMG-based continuous hand action prediction by using key state transition and model pruning[J]. Sensors, 2022, 22(24): 9949. [9] SCHULTE R V, ZONDAG M, BUURKE J H, et al. Multi-day emg-based knee joint torque estimation using hybrid neuromusculoskeletal modelling and convolutional neural networks[J]. Frontiers in Robotics and AI, 2022, 9: 869476. [10] BAO T, ZAIDI S A R, XIE S, et al. Inter-subject domain adaptation for CNN-based wrist kinematics estimation using sEMG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1068-1078. [11] LI J, LI K, ZHANG J, et al. Continuous motion estimation of knee joint based on a parameter self-updating mechanism model[J]. Bioengineering, 2023, 10(9): 1028. [12] MOKRI C, BAMDAD M, ABOLGHASEMI V. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques[J]. Medical & Biological Engineering & Computing, 2022, 60(3): 683-699. [13] BI L, GUAN C. A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration[J]. Biomedical Signal Processing and Control, 2019, 51: 113-127. [14] 曹梦琳, 陈宇豪, 王珏, 等. 基于表面肌电图的人体运动意图识别研究进展[J]. 中国康复理论与实践, 2021, 27(5): 595-603. CAO M L, CHEN Y H, WANG J, et al. Advance in human motion intention recognition based on surface electromyography (review)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2021, 27(5): 595-603. [15] 陆思源, 陆志海, 王水花, 等. 极限学习机综述[J]. 测控技术, 2018, 37(10): 3-9. LU S Y, LU Z H, WANG S H, et al. Review of extreme learning machine[J]. Measurement and Control Technology, 2018, 37(10): 3-9. [16] ZOU J, HAN Y, SO S S. Overview of artificial neural networks[J]. Artificial Neural Networks: Methods and Applications, 2008, 458: 15-23. [17] HECHT-NIELSEN R. Theory of the backpropagation neural network[M]//Neural networks for perception. [S.l.]: Academic Press, 1992: 65-93. [18] SAKAMOTO S, HUTABARAT Y, OWAKI D, et al. Ground reaction force and moment estimation through EMG sensing using long short-term memory network during posture coordination[J]. Cyborg and Bionic Systems, 2023, 4: 0016. [19] MEDSKER L R, JAIN L. Recurrent neural networks[J]. Design and Applications, 2001, 5(64/67): 2. [20] LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks for action segmentation and detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 156-165. [21] MUNDT M, JOHNSON W R, POTTHAST W, et al. A comparison of three neural network approaches for estimating joint angles and moments from inertial measurement units[J]. Sensors, 2021, 21(13): 4535. [22] 王志红. 基于视觉手势识别的机械手操控系统的研究[D]. 天津: 天津工业大学, 2017. WANG Z H. Research on robot manipulation system based on visual gesture recognition[D]. Tianjin: Tianjin University of Technology, 2017. [23] 宋鹰翔. 基于sEMG的人体下肢关节角度连续运动估计[D]. 杭州: 杭州电子科技大学, 2020. SONG Y X. Continuous motion estimation of lower limb joint angle based on sEMG[D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2020. [24] ZHANG S, LU J, HUO W, et al. Estimation of knee joint movement using single-channel sEMG signals with a feature-guided convolutional neural network[J]. Frontiers in Neurorobotics, 2022, 16: 978014. [25] 陈江城, 张小栋, 李睿, 等. 利用sEMG的下肢动态关节力矩预测模型[J]. 西安交通大学学报, 2015, 49(12): 26-33. CHEN J C, ZHANG X D, LI R, et al. Prediction model for dynamic joint torque of lower limb with surface EMG[J]. Journal of Xi’an Jiaotong University, 2015, 49(12): 26-33. [26] 杜妍辰, 孙洁, 汪晓铭, 等. 基于肌电信号的人体下肢运动意图映射研究进展[J]. 上海理工大学学报, 2023, 45(2): 128-136. DU Y C, SUN J, WANG X M, et al. Advances in human lower limb motion intention mapping based on electromyography[J]. Journal of University of Shanghai for Science and Technology, 2023, 45(2): 128-136. [27] DING Q C, XIONG A B, ZHAO X G, et al. A novel EMG-driven state space model for the estimation of continuous joint movements[C]//Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, 2011: 2891-2897. [28] CHEN J, ZHANG X, GU L, et al. Estimating muscle forces and knee joint torque using surface electromyography: a musculoskeletal biomechanical model[J]. Journal of Mechanics in Medicine and Biology, 2017, 17(4): 1750069. [29] HAN J, DING Q, XIONG A, et al. A state-space EMG model for the estimation of continuous joint movements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4267-4275. [30] XI X, JIANG W, HUA X, et al. Simultaneous and continuous estimation of joint angles based on surface electromyography state-space model[J]. IEEE Sensors Journal, 2021, 21(6): 8089-8099. [31] ZHAO Y, LI Z, ZHANG Z, et al. An EMG-driven musculoskeletal model for estimation of wrist kinematics using mirrored bilateral movement[J]. Biomedical Signal Processing and Control, 2023, 81: 104480. [32] BUONGIORNO D, BARSOTTI M, BARONE F, et al. A linear approach to optimize an EMG-driven neuromusculoskeletal model for movement intention detection in myo-control: a case study on shoulder and elbow joints[J]. Frontiers in Neurorobotics, 2018, 12: 74. [33] KIM Y, STAPORNCHAISIT S, KAMBARA H, et al. Muscle synergy and musculoskeletal model-based continuous multi-dimensional estimation of wrist and hand motions[J]. Journal of Healthcare Engineering, 2020(1): 5451219. [34] LIANG F Y, GAO F, LIAO W H. Synergy-based knee angle estimation using kinematics of thigh[J]. Gait & Posture, 2021, 89: 25-30. [35] 张亚男. 基于肌肉协同分析的上肢多关节同步连续运动估计研究[D]. 武汉: 武汉理工大学, 2018. ZHANG Y N. Research on simultaneous and continuous motion estimation for multiple joints of upper limb based on muscle synergy analysis[D]. Wuhan: Wuhan University of Technology, 2018. [36] HE Z, QIN Z, KOIKE Y. Continuous estimation of finger and wrist joint angles using a muscle synergy based musculoskeletal model[J]. Applied Sciences, 2022, 12(8): 3772. [37] PENG L, HOU Z G, KASABOV N, et al. sEMG-based torque estimation for robot-assisted lower limb rehabilitation[C]//Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), 2015: 1-5. [38] ATOUFI B, KAMAVUAKO E N, HUDGINS B, et al. Toward proportional control of myoelectric prostheses with muscle synergies[J]. Journal of Medical and Biological Engineering, 2014, 34(5): 475-481. [39] LOCONSOLE C, DETTORI S, FRISOLI A, et al. An EMG-based approach for on-line predicted torque control in robotic-assisted rehabilitation[C]//Proceedings of the 2014 IEEE Haptics Symposium (HAPTICS), 2014: 181-186. [40] DENG Y, GAO F, CHEN H. Angle estimation for knee joint movement based on PCA-RELM algorithm[J]. Symmetry, 2020, 12(1): 130. [41] ZHANG Q, LIU R, CHEN W, et al. Simultaneous and continuous estimation of shoulder and elbow kinematics from surface EMG signals[J]. Frontiers in Neuroscience, 2017, 11: 253504. [42] ZHANG Q, ZHENG C, XIONG C. EMG-based estimation of shoulder and elbow joint angles for intuitive myoelectric control[C]//Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015: 1912-1916. [43] SONG Q, MA X, LIU Y. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach[J]. Computers in Biology and Medicine, 2023, 163: 107124. [44] HUANG Y, CHEN K, ZHANG X, et al. Motion estimation of elbow joint from sEMG using continuous wavelet transform and back propagation neural networks[J]. Biomedical Signal Processing and Control, 2021, 68: 102657.. [45] 王豪. 基于表面肌电信号的人体下肢运动估计及识别研究[D]. 天津: 河北工业大学, 2022. WANG H. Estimation and recognition of human lower limb motion based on surface EMG[D]. Tianjin: Hebei University of Technology, 2022. [46] YOKOYAMA M, KOYAMA R, YANAGISAWA M. An evaluation of hand-force prediction using artificial neural-network regression models of surface EMG signals for handwear devices[J]. Journal of Sensors, 2017, 3980906: 1-12. [47] 杨纳川. 基于sEMG的关节力矩估计方法与肘关节康复外骨骼系统研究[D]. 广州: 华南理工大学, 2021. YANG N C. Research on joint torque estimation method and elbow rehabilitation exoskeleton system based on surface electromyography[D]. Guangzhou: South China University of Technology, 2021. [48] 李素姣, 朱越, 吴坤, 等. 基于多模态信息融合的肘关节连续运动估计[J]. 医用生物力学, 2023, 38(2): 324-330. LI S J, ZHU Y, WU K, et al. Continuous motion estimation of elbow joint based on multi-modal information fusion[J]. Journal of Medical Biomechanics, 2023, 38(2): 324-330. [49] WANG J, WANG L, XI X, et al. Estimation and correlation analysis of lower limb joint angles based on surface electromyography[J]. Electronics, 2020, 9(4): 556. [50] SHI Y J, GAO X S, LUO D G, et al. Prediction of lower limb joint motion based on surface EMG signal and extreme learning machine[J]. Ordnance Industry Automation, 2021, 11(40): 11. [51] HUANG G B, ZHOU H, DING X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 42(2): 513-529. [52] 陈洋, 王士同. 多样性正则化极限学习机的集成方法 [J]. 计算机科学与探索, 2022, 16(8): 1819-1828. CHEN Y, WANG S T. Ensemble method of diverse regularized extreme learning machines[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (8): 1819-1828. [53] XIE H, LI G, ZHAO X, et al. Prediction of limb joint angles based on multi-source signals by GS-GRNN for exoskeleton wearer[J]. Sensors, 2020, 20(4): 1104. [54] ZHAO H, QIU Z, PENG D, et al. Prediction of joint angles based on human lower limb surface electromyography[J]. Sensors, 2023, 23(12): 5404. [55] WU H, HUANG Q, WANG D, et al. A CNN-SVM combined model for pattern recognition of knee motion using mechanomyography signals[J]. Journal of Electromyography and Kinesiology, 2018, 42: 136-142. [56] 张瑞轩, 郭媛, 王瑞雪, 等. 表面肌电信号驱动手部运动的机器学习表征与识别[J]. 医用生物力学, 2021, 36(S1): 353. ZHANG R X, GUO Y, WANG R X, et al. Machine learning representation and recognition of surface EMG signal-driven hand motions[J]. Medical Biomechanics, 2021, 36(S1): 353. [57]SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306. [58]HUANG Y, HE Z, LIU Y, et al. Real-time intended knee joint motion prediction by deep-recurrent neural networks[J]. IEEE Sensors Journal, 2019, 19(23): 11503-11509. [59]黄吕超, 杨黄屯, 崔明涛, 等. 基于自学习的LSTM网络短路电流零点预测方法[J]. 电工电能新技术, 2024, 43(2): 78-86. HUANG L C, YANG H T, CUI M T, et al. A method for predicting short circuit current zeros in LSTM networks based on self-learning[J]. Advanced Technology of Electrical Engineering and Energy, 2024, 43(2): 78-86. [60] TANG G, SHENG J, WANG D, et al. Continuous estimation of human upper limb joint angles by using PSO-LSTM model[J]. IEEE Access, 2020, 9: 17986-17997. [61] ZHAO D, MA Y, MENG J, et al. MCR-ALS-based muscle synergy extraction method combined with LSTM neural network for motion intention detection[J]. Frontiers in Neurorobotics, 2023, 17: 1174710. [62] AVIAN C, PRAKOSA S W, FAISAL M, et al. Estimating finger joint angles on surface EMG using manifold learning and long short-term memory with attention mechanism[J]. Biomedical Signal Processing and Control, 2022, 71: 103099. [63] HAJIAN G, MORIN E. Deep multi-scale fusion of convolutional neural networks for EMG-based movement estimation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 486-495. [64] SUN N, CAO M, CHEN Y, et al. Continuous estimation of human knee joint angles by fusing kinematic and myoelectric signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30: 2446-2455. [65] CHEN Z, WANG H, CHEN H, et al. Continuous motion finger joint angle estimation utilizing hybrid sEMG-FMG modality driven transformer-based deep learning model[J]. Biomedical Signal Processing and Control, 2023, 85: 105030. [66] CHAI Y, LIU K, LI C, et al. A novel method based on long short term memory network and discrete-time zeroing neural algorithm for upper-limb continuous estimation using sEMG signals[J]. Biomedical Signal Processing and Control, 2021, 67: 102416. [67] LIU X, WANG J, LIANG T, et al. SE-TCN network for continuous estimation of upper limb joint angles[J]. Mathematical Biosciences and Engineering, 2022, 20(2): 3237-3260. |
[1] | LIU Jin-ping1,2,YU Jin-xiang2. Parameter estimation method of logistic regression models based on particle swarm optimization algorithm [J]. Computer Engineering and Applications, 2009, 45(33): 42-44. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 36
|
|
|||||||||||||||||||||||||||||||||||||||||||||