[1] 吕海鹏. 基于强化学习的高速公路自动驾驶决策方法研究[D]. 长春: 吉林大学, 2022.
LV H P. Research on decision-making method of highway autonomous driving based on reinforcement learning[D]. Changchun: Jilin University, 2022.
[2] 陈广福. 基于强化学习的高速公路CAVs协同驾驶决策研究[D]. 广州: 广东工业大学, 2022.
CHEN G F. Research on cooperative driving decision of highway CAVs based on reinforcement learning[D]. Guangzhou: Guangdong University of Technology, 2022.
[3] 吴昊天, 牟康伟, 王江东. 多维恶劣场景下基于有限状态机的决策控制方法研究[J]. 质量与认证, 2021(11): 51-54.
WU H T, MOU K W, WANG J D. Research on decision control method based on finite state machine in multidimensional edge cases[J]. Quality and Certification, 2021(11): 51-54.
[4] SYED U, SCHAPIRE R E. A reduction from apprenticeship learning to classification[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems, 2010: 2253-2261.
[5] YI X, CODEVILLA F, GURRAM A, et al. Multimodal end-to-end autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 537-547.
[6] ROSS S, BAGNELL D. Efficient reductions for imitation learning[C]//Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, 2010: 661-668.
[7] ROSS S, GORDON G, BAGNELL D. A reduction of imitation learning and structured prediction to no-regret online learning[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, 2011: 627-635.
[8] NG A Y, RUSSELL S. Algorithms for inverse reinforcement learning[C]//Proceedings of the 17th International Conference on Machine Learning, 2000: 663-670.
[9] KIM K, GU Y H, SONG J M, et al. Domain adaptive imitation learning[C]//Proceedings of the International Conference on Machine Learning, 2020: 5286-5295.
[10] 杨瑞阳, 金蓓弘. 基于模仿学习的自动驾驶智能体构建[J]. 人工智能, 2022(4): 30-39.
YANG R Y, JIN B H. Construction of autonomous driving agent based on imitation learning[J]. Artificial Intelligence, 2022(4): 30-39.
[11] 万星. 基于深度强化学习的车辆自动驾驶拟人决策[D]. 大连: 大连理工大学, 2021.
WAN X. Anthropomorphic decision-making for automated driving vehicle based on deep reinforcement learning theory[D]. Dalian: Dalian University of Technology, 2021.
[12] 罗鹏. 基于深度强化学习的智能车驾驶行为决策研究[D]. 武汉: 武汉理工大学, 2021.
LUO P. Research on driving behavior decision of intelligent vehicles based on reinforcement learning[D]. Wuhan: Wuhan University of Technology, 2021.
[13] LIU Y X, GUPTA A, ABBEEL P, et al. Imitation from observation: learning to imitate behaviors from raw video via context translation[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, 2018: 1118-1125.
[14] CAO Z, XU S B, JIAO X, et al. Trustworthy safety improvement for autonomous driving using reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2022, 138: 103656.
[15] CHAE H, KANG C M, KIM B D, et al. Autonomous braking system via deep reinforcement learning[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems, 2017: 1-6.
[16] 张斌, 何明, 陈希亮, 等. 改进DDPG算法在自动驾驶中的应用[J]. 计算机工程与应用, 2019, 55(10): 264-270.
ZHANG B, HE M, CHEN X L, et al. Self-driving via improved DDPG algorithm[J]. Computer Engineering and Applications, 2019, 55(10): 264-270.
[17] 高振海, 闫相同, 高菲, 等. 仿驾驶员DDPG汽车纵向自动驾驶决策方法[J]. 汽车工程, 2021, 43(12): 1737-1744.
GAO Z H, YAN X T, GAO F, et al. A driver-like decision-making method for longitudinal autonomous driving based on DDPG[J]. Automotive Engineering, 2021, 43(12): 1737-1744.
[18] 张明恒, 吕新飞, 万星, 等. 基于WGAIL-DDPG(λ)的车辆自动驾驶决策模型[J]. 大连理工大学学报, 2022, 62(1): 77-84.
ZHANG M H, LV X F, WAN X, et al. Decision model for automatic vehicle driving based on WGAIL-DDPG(λ)[J]. Journal of Dalian University of Technology, 2022, 62(1): 77-84.
[19] POMERLEAU D A. ALVINN: an autonomous land vehicle in a neural network[C]//Proceedings of the 1st International Conference on Neural Information Processing Systems, 1988: 305-313.
[20] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[J]. arXiv:1511.0595 2, 2015.
[21] BURDA Y, EDWARDS H, STORKEY A, et al. Exploration by random network distillation[J]. arXiv:1810.12894, 2018.
[22] PATHAK D, AGRAWAL P, EFROS A A, et al. Curiosity-driven exploration by self-supervised prediction[C]//Proceedings of the International Conference on Machine Learning, 2017: 2778-2787.
[23] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Massachusetts: MIT Press, 2018.
[24] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. arXiv:1509. 02971, 2015.
[25] WYMANN B, ESPIé E, GUIONNEAU C, et al. Torcs, the open racing car simulator[J/OL]. (2013-12-19)[2023-01-10].http://torcs.sourceforge.net. |