Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (13): 102-112.DOI: 10.3778/j.issn.1002-8331.2303-0316

• Pattern Recognition and Artificial Intelligence • Previous Articles     Next Articles

Multimodal Feature Adaptive Fusion for Fake News Detection

WANG Teng, ZHANG Dawei, WANG Liqin, DONG Yongfeng   

  1. 1.School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
    2.National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • Online:2024-07-01 Published:2024-07-01

多模态特征自适应融合的虚假新闻检测

王腾,张大伟,王利琴,董永峰   

  1. 1.河北工业大学 人工智能与数据科学学院,天津 300401
    2.中国科学院 自动化研究所 模式识别国家重点实验室,北京 100190

Abstract: In order to solve the problem that it is difficult to make full use of graphic and text information in multimodal news detection in social media news and to explore efficient multimodal information interaction methods, an adaptive multimodal feature fusion model for fake news detection is proposed. First, the model extracts and represents news text semantic features, text emotional features, and image-text semantic difference features; then, weighted splicing and fusion of various features are performed by adding adaptive weight parameters to reduce the redundancy introduced by model splicing; finally, the fusion feature is sent to the classifier. Experimental results show that the proposed model outperforms the current state-of-the-art models in evaluation indicators such as F1 score. It effectively improves the performance of fake news detection and provides strong support for the detection of fake news in social media.

Key words: fake news detection, emotional feature, image caption, adaptive fusion

摘要: 为解决社交媒体新闻中多模态新闻检测难以充分利用图文信息问题以及探索高效的多模态信息交互方法,提出了一种多模态特征自适应融合的虚假新闻检测模型。分别对新闻文本语义特征、文本情感特征和图文语义差异特征进行提取和表示;通过添加自适应权重参数的方式对多种特征进行加权拼接融合,以减少模型拼接时引入的冗余信息;将融合特征送入分类器中进行新闻的真假分类。实验结果表明,所提出的模型在F1值等评价指标上都优于当前先进的模型。有效提升了虚假新闻检测性能,为社交媒体中虚假新闻的检测提供了有力支持。

关键词: 虚假新闻检测, 情感特征, 图像描述, 自适应融合