[1] 中国互联网络信息中心. 第50次中国互联网络发展状况统计报告[R]. 北京: 中国互联网络信息中心, 2022.
China Internet Network Information Center. The 50th statistical report on China’s Internet development[R]. Beijing: China Internet Network Information Center, 2022.
[2] MEEL P, VISHWAKARMA D K. Fake news, rumor, information pollution in social media and web: a contemporary survey of state-of-the-arts, challenges and opportunities[J]. Expert Systems with Applications, 2019, 153(1): 112986.
[3] SATU M S, KHAN M I, MAHMUD M, et al. TClustVID: a novel machine learning classification model to investigate topics and sentiment in COVID-19 tweets[J]. Knowledge-Based Systems, 2021, 226: 107126.
[4] RISH I. An empirical study of the Naive Bayes classifier[J]. Journal of Universal Computer Science, 2001, 1(2): 127.
[5] SAFAVIAN S R, LANDGREBE D. A survey of decision tree classifier methodology[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1991, 21(3): 660-674.
[6] NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567.
[7] VOLKOVA S, SHAFFER K, JIN Y J, et al. Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on twitter[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2017: 647-653.
[8] POTTHAST M, KIESEL J, REINARTZ K, et al. A stylometric inquiry into hyperpartisan and fake news[J]. arXiv:1702.
05638, 2017.
[9] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web, 2011: 675-684.
[10] CHEN Y, CONROY N J, RUBIN V L. Misleading online content: recognizing clickbait as false news[C]//Proceedings of the 2015 ACM on Workshop on Multimodal Deception Detection, 2015: 15-19.
[11] FENG S, BANERJEE R, CHOI Y. Syntactic stylometry for deception detection[C]//Proceedings of the Meeting of the Association for Computational Linguistics: Short Papers, 2012: 171-175.
[12] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2016.
[13] YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]//Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 901-907.
[14] CHEN T, LI X, YIN H, et al. Call attention to rumors: deep attention based recurrent neural networks for early rumor detection[C]//Lecture Notes in Computer Science: Trends and Applications in Knowledge Discovery and Data Mining PAKDD 2018 Workshops, Melbourne, VIC, 2018: 40-52
[15] 沈瑞琳, 潘伟民, 彭成, 等. 基于多任务学习的微博谣言检测方法[J]. 计算机工程与应用, 2021, 57(24): 192-197.
SHEN R L, PAN W M, PENG C, et al. Microblog rumor detection method based on multi-task learning[J]. Computer Engineering and Applications, 2021, 57(24): 192-197.
[16] JIN Z, CAO J , ZHANG Y, et al. Novel visual and statistical image features for microblogs news verification[J]. IEEE Transactions on Multimedia, 2017, 19(3): 598-608.
[17] KE W, SONG Y, ZHU K Q. False rumors detection on Sina Weibo by propagation structures[C]//Proceedings of the IEEE International Conference on Data Engineering, 2015: 651-662.
[18] QI P, CAO J, YANG T, et al. Exploiting multi-domain visual information for fake news detection[C]//Proceedings of the IEEE International Conference on Data Mining, 2019: 518-527.
[19] CAO J, QI P, SHENG Q, et al. Exploring the role of visual content in fake news detection[M]//Disinformation, misinformation, and fake news in social media: emerging research challenges and opportunities. Cham: Springer, 2020: 141-161.
[20] JIN Z, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia, 2017: 795-816.
[21] KUMARI R, EKBAL A. AMFB: attention based multimodal factorized bilinear pooling for multimodal fake news detection[J]. Expert Systems with Application, 2021, 184: 115412.
[22] WANG Y, MA F, WANG H, et al. Multimodal emergent fake news detection via meta neural process networks[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 3708-3716.
[23] TUAN N M D, MINH P Q N. Multimodal fusion with BERT and attention mechanism for fake news detection[C]//Proceedings of the 2021 RIVF International Conference on Computing and Communication Technologies, 2021: 1-6.
[24] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics, 2019: 4171-4186.
[25] WANG Y, MA F, JIN Z, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 849-857.
[26] ZHUANG Y, ZHANG Y. Yet at memotion 2.0 2022: hate speech detection combining bilstm and fully connected layers[C]//Proceedings of De-Factify: Workshop on Multimodal Fact Checking and Hate Speech Detection, 2022.
[27] PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014: 1532-1543.
[28] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.
1556, 2014.
[29] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]//Proceedings of the The World Wide Web Conference, 2019: 2915-2921.
[30] QIAN S, WANG J, HU J, et al. Hierarchical multi-modal contextual attention network for fake news detection[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 153-162.
[31] LI P, SUN X, YU H, et al. Entity-oriented multi-modal alignment and fusion network for fake news detection[J]. IEEE Transactions on Multimedia, 2021, 24: 3455-3468.
[32] ZHOU X, WU J, ZAFARANI R. SAFE: similarity-aware multi-modal fake news detection[C]//Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2020: 354-367.
[33] TIAN H, GAO C, XIAO X, et al. SKEP: sentiment knowledge enhanced pre-training for sentiment analysis[J]. arXiv:2005.05635, 2020.
[34] SHEN D, ZHANG X, HENAO R, et al. Improved semantic-aware network embedding with fine-grained word alignment[J]. arXiv:1808.09633, 2018.
[35] NAN Q, CAO J, ZHU Y, et al. MDFEND: multi-domain fake news detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 3343-3347. |