[1] 胡江豪, 王丰. 基于重叠域采样混合特征的点云配准算法[J]. 计算机应用研究, 2022, 39(11): 3503-3508.
HU J H, WANG F. Point cloud registration algorithm based on mixed-features sampling for overlapping domain[J]. Application Research of Computers, 2022, 39(11): 3503-3508.
[2] BLAIS G, LEVINE M D. Registering multiview range data to create 3D computer objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820-824.
[3] WONG J M, KEE V, LE T, et al. Segicp: integrated deep semantic segmentation and pose estimation[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017: 5784-5789.
[4] CHEN S, LIU B, FENG C, et al. 3D point cloud processing and learning for autonomous driving: impacting map creation, localization, and perception[J]. IEEE Signal Processing Magazine, 2020, 38(1): 68-86.
[5] ZHU L, LIU D, LIN C, et al. Point cloud registration using representative overlapping points[EB/OL]. (2021). https://arxiv.org/abs/2107.02583.
[6] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
[7] YANG J, LI H, CAMPBELL D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38 (11): 2241-2254.
[8] ZHOU Q Y, PARK J, KOLTUN V. Fast global registration[C]//Proceedings of European Conference on Computer Vision. Cham: Springer, 2016: 766-782.
[9] AOKI Y, GOFORTH H, SRIVATSAN R A, et al. Pointnetlk: robust & efficient point cloud registration using pointnet[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE Press, 2019: 7163-7172.
[10] QI C R, SU H, MO K, et al. Pointnet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE Press, 2017: 652-660.
[11] LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th International Joint Conference on Artificial Intelligence. [S.l.]: Morgan Kaufmann Publishers Inc, 1997.
[12] WANG Y, SOLOMON J M. Deep closest point: learning representations for point cloud registration[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE Press, 2019: 3523-3532.
[13] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[14] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[15] WANG Y, SOLOMON J M. Prnet: self-supervised learning for partial-topartial registration[C]//Advances in Neural Information Processing Systems, 2019.
[16] JANG E, GU S, POOLE B. Categorical reparameterization with gumbelsoftmax[EB/OL]. (2016). https://arxiv.org/abs/1611.01144.
[17] LI J, ZHANG C, XU Z, et al. Iterative distance-aware similarity matrix convolution with mutual?supervised point elimination for efficient point cloud registration[C]//Proceedings of European Conference on Computer Vision. Cham: Springer, 2020: 378-394.
[18] MEI G, POIESI F, SALTORI C, et al. Overlap-guided Gaussian mixture models for point cloud registration[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 4511-4520.
[19] 孙战里, 张玉欣, 陈霞. 基于膨胀图卷积与离群点过滤的残缺点云配准[J]. 计算机工程与应用, 2022, 58(22): 186-194.
SUN Z L, ZHANG Y X, CHEN X. Partial point cloud registration based on dilated graph convolution and outlier filtering[J]. Computer Engineering and Applications, 2022, 58(22): 186-194.
[20] SHEN Y, HUI L, JIANG H, et al. Reliable inlier evaluation for unsupervised point cloud registration[J]. arXiv:2202. 11292, 2022.
[21] HUANG X, QU W, ZUO Y, et al. GMF: general multimodal fusion framework for correspondence outlier rejection[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 12585-12592.
[22] CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Piscataway, NJ: IEEE Press, 2019: 8958-8966.
[23] BAI X, LUO Z, ZHOU L, et al. D3feat: joint learning of dense detection and description of 3D local features[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE Press, 2020: 6359-6367.
[24] YEW Z J, LEE G H. Rpm-net: robust point matching using learned features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11824-11833.
[25] CHEN G, WANG M, YUE Y, et al. Full transformer framework for robust point cloud registration with deep information interaction[J]. arXiv:2112.09385, 2021.
[26] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32 (1): 4-24.
[27] WU Z, SONG S, KHOSLA A, et al. 3D shapenets: a deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1912-1920.
[28] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shapenet: an information-rich 3D model repository[J]. arXiv:1512. 03012, 2015.
[29] BAUER D, PATTEN T, VINCZE M. Reagent: point cloud registration using imitation and reinforcement learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14586-14594.
[30] CHEN Z, CHEN H, GONG L, et al. UTOPIC: uncertainty-aware overlap prediction network for partial point cloud registration[J]. arXiv:2208.02712, 2022.
[31] 杨佳琪, 张世坤, 范世超, 等. 多视图点云配准算法综述[J]. 华中科技大学学报(自然科学版), 2022, 50(11): 16-34.
YANG J Q, ZHANG S K, FAN S C, et al. Survey on multi-view point cloud registration algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (11): 16-34. |