[1] CHIANG K W, TSAI G J, LI Y H, et al. Development of LiDAR-based UAV system for environment reconstruction[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1790-1794.
[2] 邱鑫, 郑明魁, 郭里婷, 等. 基于图卷积网络的三维点云配准研究[J]. 广播电视网络, 2022, 29(10): 124-128.
QIU X, ZHENG M K, GUO L T, et al. Research on 3D point cloud registration based on graph convolutional network[J]. Radio and Television Networks, 2022, 29(10): 124-128.
[3] 李建微, 占家旺. 三维点云配准方法研究进展[J]. 中国图象图形学报, 2022, 27(2): 349-367.
LI J W, ZHAN J W. Review on 3D point cloud registration method[J]. Journal of Image and Graphics, 2022, 27(2): 349-367.
[4] 秦红星, 刘镇涛, 谭博元. 深度学习刚性点云配准前沿进展[J]. 中国图象图形学报, 2022, 27(2): 329-348.
QIN H X, LIU Z T, TAN B Y. Research on deep learning rigid point cloud registration[J]. Journal of Image and Graphics, 2022, 27(2): 329-348.
[5] HEBERT M, JOHNSON A. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 433-449.
[6] DENG H, BIRDAL T, ILIC S. Ppfnet: global context aware local features for robust 3d point matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, June 18-22, 2018. Piscataway, NJ: IEEE, 2018: 195-205.
[7] CHOY C, PARK J, KOLTUN V. Fully convolutional geometric features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, October 27-November 2, 2019. Piscataway, NJ: IEEE, 2019: 8958-8966.
[8] BAI X Y, LUO Z X, ZHOU L, et al. D3feat: Joint learning of dense detection and description of 3d local features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, June 14-19, 2020. Piscataway, NJ: IEEE, 2020: 6359-6367.
[9] HUANG S Y, GOJCIC Z, USVYATSOV M, et al. Predator: registration of 3D point clouds with low overlap[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 19-25, 2021. Piscataway, NJ: IEEE, 2021: 4267-4276.
[10] YU H, LI F, SALEH M, et al. Cofinet: reliable coarse-to-fine correspondences for robust pointcloud registration[C]//Advances in Neural Information Processing Systems, 2021: 23872-23884.
[11] THOMAS H, QI C R, DESCHAUD J E, et al. Kpconv: flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, June 16-20, 2019. Piscataway, NJ: IEEE, 2019: 6411-6420.
[12] WANG Y, SOLOMON J M. Deep closest point: learning representations for point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, June 16-20, 2019. Piscataway, NJ: IEEE, 2019: 3523-3532.
[13] QIN Z, YU H, WANG C J, et al. Geometric transformer for fast and robust point cloud registration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, June 19-24, 2022. Piscataway, NJ: IEEE, 2022: 11143-11152.
[14] GAO S H, CHENG M M, ZHAO K, et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[15] QIU S, ANWAR S, BARNES N. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 19-25, 2021. Piscataway, NJ: IEEE, 2021: 1757-1767.
[16] QIN C, YOU H X, WANG L C, et al. PointDAN: a multi-scale 3D domain adaption network for point cloud representation[C]//Advances in Neural Information Processing Systems, 2019: 7192-7203.
[17] KUANG H W, WANG B, AN J, et al. Voxel-FPN: multi-scale voxel feature aggregation for 3D object detection from LIDAR point clouds[J]. Sensors, 2020, 20(3): 704.
[18] LU F, CHEN G, LIU Y L, et al. Hregnet: a hierarchical network for large-scale outdoor lidar point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, June 19-25, 2021. Piscataway, NJ: IEEE, 2021: 16014-16023.
[19] HORACHE S, DESCHAUD J E, GOULETTE F. 3D point cloud registration with multi-scale architecture and unsupervised transfer learning[C]//2021 International Conference on 3D Vision (3DV), London, December 1-3, 2021: 1351-1361.
[20] YANG J C, ZHANG Q, NI B B, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, June 16-20, 2019. Piscataway, NJ: IEEE, 2019: 3323-3332.
[21] YEW Z J, GIM H L. REGTR: end-to-end point cloud correspondences with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, June 19-24, 2022. Piscataway, NJ: IEEE, 2022: 6677-6686.
[22] LI Y, HARADA T. Lepard: learning partial point cloud matching in rigid and deformable scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, June 19-24, 2022. Piscataway, NJ: IEEE, 2022: 5554-5564.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[24] GOJCIC Z, ZHOU C F, WEGNER J D, et al. The perfect match: 3D point cloud matching with smoothed densities[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, June 16-20, 2019. Piscataway, NJ: IEEE, 2019: 5545-5554.
[25] AO S, HU Q Y, YANG B, et al. Spinnet: learning a general surface descriptor for 3D point cloud registration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 19-25, 2021. Piscataway, NJ: IEEE, 2021: 11753-11762.
[26] WANG H P, LIU Y, DONG Z, et al. You only hypothesize once: point cloud registration with rotation-equivariant descriptors[C]//Proceedings of the 30th ACM International Conference on Multimedia, 2022: 1630-1641.
[27] YEW Z J, LEE G H. 3dfeat-net: weakly supervised local 3D features for point cloud registration[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, September 8-14, 2018. Berlin: Springer, 2018: 607-623. |