[1] 王帅, 周乐来, 李贻斌, 等. 多移动机器人编队领航跟随方法研究进展[J]. 无人系统技术, 2019, 2(5): 1-8.
WANG S, ZHOU L L, LI Y B, et al. Advances in the leader-following method of multi-mobile robots formation[J]. Unmanned Systems Technology, 2019, 2(5): 1-8.
[2] 乔磊, 李宗刚, 杜亚江. 有限时间内非完整移动机器人编队控制[J]. 计算机工程与应用, 2023, 59(13): 74-81.
QIAO L, LI Z G, DU Y J. Formation maneuvering of multiple non-holonomic wheeled mobile robot in finite time[J]. Computer Engineering and Applications, 2023, 59(13): 74-81.
[3] 王帅磊, 周绍磊, 代飞扬, 等. 无向拓扑多航天器系统分组姿态协同控制[J]. 兵器装备工程学报, 2021, 42(7): 152-157.
WANG S L, ZHOU S L, DAI F Y, et al. Multi-spacecraft system group attitude coordinated control with undirected topology[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 152-157.
[4] 刘向东, 刘海阔, 杜长坤, 等. 基于多智能体系统的多航天器编队分布式姿态协同控制[J]. 上海航天(中英文), 2022, 39(4): 94-103.
LIU X D, LIU H K, DU C K, et al. Distributed attitude cooperative control for multi-spacecraft formation based on multi-agent systems[J]. Aerospace Shanghai (Chinese & English), 2022, 39(4): 94-103.
[5] 王得朝, 金霄, 陈浙梁, 等. 中大型无人水面舰艇及编队协同发展分析[J]. 现代防御技术, 2021, 49(4): 7-14.
WANG D C, JIN X, CHEN Z L, et al. Analysis on the development of medium and large sized unmanned surface vehicle and formation coordinated[J]. Modern Defence Technology, 2021, 49(4): 7-14.
[6] SANG T T, XIAO J C, XIONG J F, et al. Path planning method of unmanned surface vehicles formation based on improved A* algorithm[J]. Journal of Marine Science and Engineering, 2023, 11(1): 176.
[7] 田磊, 董希旺, 赵启伦, 等. 异构集群系统分布式自适应输出时变编队跟踪控制[J]. 自动化学报, 2021, 47(10): 2386-2401.
TIAN L, DONG X W, ZHAN Q L, et al. Distributed adaptive time-varying output formation tracking for heterogeneous swarm systems[J]. Acta Automatica Sinica, 2021, 47(10): 2386-2401.
[8] MA L, WANG Y L, FEI M R, et al. Cross-dimensional formation control of second-order heterogeneous multi-agent systems[J]. ISA Transactions, 2022, 127: 188-196.
[9] LIU W H, ZHENG X, DENG Z H. Adaptive distributed formation maintenance for multiple UAVs: exploiting proximity behavior observations[J]. Journal of Central South University, 2021, 28(3): 784-795.
[10] 李正平, 鲜斌. 基于虚拟结构法的分布式多无人机鲁棒编队控制[J]. 控制理论与应用, 2020, 37(11): 2423-2431.
LI Z P, XIAN B. Robust distributed formation control of multiple unmanned aerial vehicles based on virtual structure[J]. Control Theory & Applications, 2020, 37(11): 2423-2431.
[11] 孙文涵, 鲜斌. 基于方位信息的无人机编队控制设计与验证[J]. 控制理论与应用, 2023, 40(9): 1537-1546.
SUN W H, XIAN B. Bearing-only formation control for multiple unmanned aerial vehicles with real time experimental veri?cation[J]. Control Theory & Applications, 2023, 40(9): 1537-1546.
[12] 刘伟, 周绍磊, 祁亚辉, 等. 有向切换通信拓扑下多无人机分布式编队控制[J]. 控制理论与应用, 2015, 32(10): 1422-1427.
LIU W, ZHOU S L, QI Y H, et al. Distributed formation control for multiple unmanned aerial vehicles with directed switching communication topologies[J]. Control Theory & Applications, 2015, 32(10): 1422-1427.
[13] 周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 259-267.
ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 259-267.
[14] DONG X W, YU B C, SHI Z Y, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications[J]. IEEE Transactions on Control Systems Technology, 2014, 23(1): 340-348.
[15] DONG X W, ZHOU Y, REN Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[J]. Control Engineering Practice, 2016, 46: 26-36.
[16] DONG X W, HUA Y, HU G, et al. Time-varying formation feasibility analysis for linear multi-agent systems with time delays and switching graphs[C]//2019 Chinese Control Conference (CCC), 2019: 6263-6268.
[17] QI Y H, ZHOU S L, KANG Y H, et al. Formation control for unmanned aerial vehicles with directed and switching topologies[J]. International Journal of Aerospace Engineering, 2016: 7657452.
[18] DU H, ZHU W, WEN G, et al. Distributed formation control of multiple quadrotor aircraft based on nonsmooth consensus algorithms[J]. IEEE Transactions on Cybernetics, 2017, 49(1): 342-353.
[19] LI H, MA Q, ZHANG J. Research on formation control technology for multiple flight vehicles based on consensus theory[C]//2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2020: 1458-1462.
[20] 王琳, 张庆杰, 陈宏伟. 满足LQR指标的群系统编队形成问题优化控制方法[J]. 航空学报, 2022, 43(S1): 34-42.
WANG L, ZHANG Q J, CHEN H W. Optimal control method for swarm systems formation achievement problem with LQR performance index[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 34-42.
[21] HU J, LANZON A. Cooperative adaptive time-varying formation tracking for multi-agent systems with LQR performance index and switching directed topologies[C]//2018 IEEE Conference on Decision and Control (CDC), 2018: 5102-5107.
[22] JOND H B, NABIYEV V V, LUKá? D. Linear quadratic differential game formulation for leaderless formation control[J]. Journal of Industrial and Systems Engineering, 2017, 11: 47-58.
[23] JOND H B, NABIYEV V V, OZMEN N G, et al. Existence of Nash equilibrium in differential game approach to formation control[J]. International Journal of Robotics and Automation, 2018, 33(4): 428-434.
[24] JOND H B, VASIF N. On the finite horizon Nash equilibrium solution in the differential game approach to formation control[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1233-1242.
[25] WU X J, ZHOU J L, LI Y L, et al. A constructive semiglobal differential game design method for multi-agent systems under input constraint and collision avoidance[C]//2021 China Automation Congress (CAC), 2021: 3746-3753.
[26] 郑大钟. 线性系统理论[M]. 北京: 清华大学出版社, 2002: 224-231.
ZHENG D Z. Linear system theory[M]. Beijing: Tsinghua University Press, 2002: 224-231.
[27] NASH J. Non-cooperative games[J]. Annals of Mathematics, 1951: 286-295.
[28] 张杰. 最优控制: 数学理论与智能方法[M]. 北京: 清华大学出版社, 2017: 282-296.
ZHANG J. Optimal control: mathematical theory and intelligent method[M]. Beijing: Tsinghua University Press, 2017: 282-296.
[29] LIN W. Distributed UAV formation control using differential game approach[J]. Aerospace Science and Technology, 2014, 35: 54-62. |