[1] LI X W, LI J J, LIU Y W, et al. Residual Transceiver Hardware Impairments on Cooperative NOMA Networks[J]. IEEE Transactions on Wireless Communications, 2020, 19(1): 680-695.
[2] 尹钟舒, 洛向刚, 杨成, 等. 物联网 (IoT): 国内现状和国家标准综述[J]. 网络安全技术与应用, 2022(9): 108-111.
YI Z S, LUO X G, YANG C, et al. Internet of Things (IoT): summary of domestic status quo and national standards[J]. Network Security Technology & Application, 2022(9): 108-111.
[3] LI X W, ZHAO M L, ZENG M, et al. Hardware impaired ambient backscatter NOMA system: reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723-2736.
[4] 徐凌伟, 林文. 移动多用户通信系统的中断概率性能研究[J]. 聊城大学学报(自然科学版). 2020, 33(2): 43-49.
XU L W, LIN W. Outage probability performance analysis of mobile multi-user communication system[J]. Journal of Liaocheng University (Natural Science), 2020, 33(2): 43-49.
[5] DEEMAH H T, WALAA H. An overview and future directions on physical-layer security for cognitive radio networks[J]. IEEE Network, 2021, 35(3): 205-211.
[6] CENGIS H, MAHESH K M. Communication-free inter-operator interference management in shared spectrum small cell networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(3): 661-677.
[7] LUO X S, ZHAO W J, LI H, et al. Fusion test statistics based mixture detector for spectrum sensing[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3315-3319.
[8] KONMAL J, ANAND J, SHANKAR P. Performance of underlay cooperative hybrid OMA/NOMA scheme with user selection[C]//2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020: 1-6.
[9] ANAND J, KAMAL A, SHANKAR P. A Coordinated direct AF/DF relay-aided NOMA framework for low outage[J]. IEEE Transactions on Communications, 2022, 70(3): 1559-1579.
[10] ANAND J, KAMAL A, SHANKAR P. Performance of a new framework for coordinated direct AF relay-aided downlink NOMA[C]//2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2021: 477-482.
[11] TSANG-YI W, FENG-TSUN C, CHI-KAI H. Collaborative sampling and binary local output generation for distributed blind cooperative spectrum sensing[J]. IEEE Transactions on Communications, 2021, 69(8): 5471-5486.
[12] 马燕茹, 金明. 一种基于谱分量相关性的频谱感知方法及实验评估[J]. 无线通信技术, 2021, 30(4): 6-9.
MA Y R, JIN M. A spectral sensing method based on spectral component correlation and experimental evaluation[J]. Wireless Communication Technology, 2021, 30(4): 6-9.
[13] MAHDI N, HAMID B, NAZIH KHADDAJ M, et al. A wideband 5G cyclostationary spectrum sensing method by kernel least mean square algorithm for cognitive radio networks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2700-2704.
[14] HAYTHEM BANY S, MUATH BANI I, AHMAD AL A, et al. Energy-efficient cross-layer spectrum sharing in CR green IoT networks[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1091-1100.
[15] AMIR M, MARYAM S, HALIM Y. Spectrum sensing for symmetric α-stable noise model with convolutional neural networks[J]. IEEE Transactions on Communications, 2021, 69(8): 5121-5135.
[16] ZHAO W J, ALI S S, JIN M L, et al. Extreme eigenvalues-based detectors for spectrum sensing in cognitive radio networks[J]. IEEE Transactions on Communications, 2022, 70(1): 538-551.
[17] MUARD A, SUNDOUS K. Performance of machine learning-based techniques for spectrum sensing in mobile cognitive radio networks[J]. IEEE Access, 2022, 10: 1410-1418.
[18] WALEED E, MOHAMED I. Multiband spectrum sensing and resource allocation for IoT in cognitive 5G networks[J]. IEEE Internet of Things Journal, 2018, 5(1): 150-163.
[19] MEI R R, WANG Z G. Deep learning-based wideband spectrum sensing: a low computational complexity approach[J]. IEEE Communications Letters, 2023, 27(10): 2633-2637.
[20] DHAVAL K P, SAGAR K, ZHIGUO D, et al. Impact of primary user activity statistics in cognitive vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2859-2873.
[21] KAWTAR Z, EL MEHDI A, MARWA C. Filtered multicarrier waveforms classification: a deep learning-based approach[J]. IEEE Access, 2021, 9: 69426-69438.
[22] 盖建新, 薛宪峰, 南瑞祥, 等. 基于残差密集网络的频谱感知方法[J]. 通信学报, 2021, 42(12): 182-191.
GAI J X, XUE X F, NAN R X, et al. Spectrum sensing method based on residual dense network[J]. Journal on Communications, 2021, 42(12): 182-191.
[23] XU L W, XIN P Z, XING W L, et al. Mobile collaborative secrecy performance prediction for artificial IoT networks[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5403-5411.
[24] 徐凌伟, 权天祺. 基于BP神经网络的移动安全性能预测[J]. 聊城大学学报 (自然科学版), 2020, 33(3): 34-40.
XU L W, QUAN T Q. Mobile secrecy performance prediction based on BP neural network[J]. Journal of Liaocheng University (Natural Science), 2020, 33(3): 34-40.
[25] RAMI A H, WITOLD P, ABDULLAH B. Logic-oriented autoencoders and granular logic autoencoders: developing interpretable data representation[J]. IEEE Transactions on Fuzzy Systems, 2022, 30(3): 869-877. |