Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (4): 142-152.DOI: 10.3778/j.issn.1002-8331.2209-0156
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
FANG Hong, LI Desheng, JIANG Guangjie
Online:
2024-02-15
Published:
2024-02-15
方红,李德生,蒋广杰
FANG Hong, LI Desheng, JIANG Guangjie. Efficient Cross-Domain Transformer Few-Shot Semantic Segmentation Network[J]. Computer Engineering and Applications, 2024, 60(4): 142-152.
方红, 李德生, 蒋广杰. 高效跨域的Transformer小样本语义分割网络[J]. 计算机工程与应用, 2024, 60(4): 142-152.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2209-0156
[1] XING E, JORDAN M, RUSSELL S J, et al. Distance metric learning with application to clustering with side-information[C]//Advances in Neural Information Processing Systems 15, 2002: 505-512. [2] 陈琼, 杨咏, 黄天林, 等. 小样本图像语义分割综述[J]. 数据与计算发展前沿, 2021, 3(6): 17-34. CHEN Q, YANG Y, HUANG T L, et al. A survey on few-shot image semantic segmentation[J]. Frontiers of Data & Computing. 2021, 3(6): 17-34. [3] ZHANG C, LIN G, LIU F, et al. CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5217-5226. [4] TIAN Z, ZHAO H, SHU M, et al. Prior guided feature enrichment network for few-shot segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(2): 1050-1065. [5] XIE G, LIU J, XIONG H, et al. Scale-aware graph neural network for few-shot semantic segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 5475-5484. [6] ZHANG C, LIN G, LIU F, et al. Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Long Beach,Jun 16-20, 2019. Piscataway: IEEE, 2019: 9587-9595. [7] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [8] LU Z, HE S, ZHU X, et al. Simpler is better: few-shot semantic segmentation with classifier weight transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,?Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 8741-8750. [9] MIN J, KANG D, CHO M. Hypercorrelation squeeze for few-shot segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,?Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 6941-6952. [10] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems 30, 2017: 4077-4087. [11] WANG K, LIEW J H, ZOU Y, et al. PANet: few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov2, 2019. Piscataway: IEEE, 2019: 9197-9206. [12] LIU W, ZHANG C, LIN G, et al. CRNet: cross-reference networks for few-shot segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 4165-4173. [13] BOUDIAF M, KERVADEC H, MASUD Z I, et al. Few-shot segmentation without meta-learning: a good transductive inference is all you need?[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,?Nashville, Jun 19-25, 2021. Piscataway:IEEE, 2021: 13979-13988. [14] LI G, JAMPANI V, SEVILLA-LARA L, et al. Adaptive prototype learning and allocation for few-shot segmentation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 8334-8343. [15] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Advances in Neural Information Processing Systems 34, 2021: 12077-12090. [16] SANTORO A, BARTUNOV S, BOTVINICK M, et al. Meta-learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1842-1850. [17] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015. [18] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Advances in Neural Information Processing Systems 29, 2016: 3630-3638. [19] YANG B, LIU C, LI B, et al. Prototype mixture models for few-shot semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 763-778. [20] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1126-1135. [21] 张鑫, 姚庆安, 赵健, 等. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. ZHANG X, YAO Q A, ZHAO J, et al. Image semantic segmentation based on fully convolutional neural network[J]. Computer Engineering and Applications, 2022, 58(8): 45-57. [22] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [23] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Boston, Jun 8-10, 2015. Piscataway: IEEE, 2015: 3431-3440. [24] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin: Springer, 2015: 234-241. [25] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [26] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 2881-2890. [27] CHEN L, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [28] CHEN L, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. [29] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 801-818. [30] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Piscataway: IEEE, 2017: 1251-1258. [31] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Nevada, Mar 12-15, 2018. Piscataway: IEEE, 2018: 1451-1460. [32] ZHENG S, LU J, ZHAO H, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,?Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 6881-6890. [33] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,?Nashville, Jun 19-25, 2021. Piscataway: IEEE, 2021: 10012-10022. [34] LIU Y, ZHANG X, ZHANG S, et al. Part-aware prototype network for few-shot semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 142-158. [35] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems 32, 2019: 8024-8035. [36] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Piscataway: IEEE, 2016: 770-778. [37] LI X, WEI T, CHEN Y P, et al. FSS-1000: a 1000-class dataset for few-shot segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 2869-2878. [38] SHABAN A, BANSAL S, LIU Z, et al. One-shot learning for semantic segmentation[J]. arXiv:1709.03410, 2017. [39] LIN T, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [40] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, Jun 20-26, 2009. Piscataway: IEEE, 2009: 248-255. [41] LOSHCHILOV I, HUTTER F. Fixing weight decay regularization in Adam[C]//Proceedings of the 2018 IEEE International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018. Piscataway: IEEE, 2018. [42] EVERINGHAM M, ESLAMI S M, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. [43] HARIHARAN B, ARBELáEZ P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 297-312. [44] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [45] RAKELLY K, SHELHAMER E, DARRELL T, et al. Few-shot segmentation propagation with guided networks[J]. arXiv: 1806. 07373, 2018. [46] WANG H, ZHANG X, HU Y, et al. Few-shot semantic segmentation with democratic attention networks[C]//Proceedings of the 16th European Conference on Computer Vision,Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 730-746. [47] RAKELLY K, SHELHAMER E, DARRELL T, et al. Conditional networks for few-shot semantic segmentation[C]//Proceedings of the 2018 IEEE International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018. Piscataway: IEEE, 2018. [48] SIAM M, ORESHKIN B, JAGERSAND M. Adaptive masked proxies for few-shot segmentation[J]. arXiv:1902.11123, 2019. [49] NGUYEN K, TODOROVIC S. Feature weighting and boosting for few-shot segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 622-631. |
[1] | CAI Guoyong, LI Anqing. Prompt-Learning Inspired Approach to Unsupervised Sentiment Style Transfer [J]. Computer Engineering and Applications, 2024, 60(5): 146-155. |
[2] | LI Qing, LI Haitao, LI Hui, ZHANG Junhu. Photovoltaic Panel Segmentation Using Attention Mechanism and Global Convolution [J]. Computer Engineering and Applications, 2024, 60(4): 237-248. |
[3] | GUAN Wenqing, ZHOU Shibin, ZHANG Guopeng. Aerial Image Object Detection with Feature Enhancement Using Hybrid Attention [J]. Computer Engineering and Applications, 2024, 60(4): 249-257. |
[4] | CHEN Lifang, LUO Shiyong. Multi-Scale Liver Tumor Segmentation Algorithm by Fusing Convolution and Transformer [J]. Computer Engineering and Applications, 2024, 60(4): 270-279. |
[5] | CHANG Jian, CHEN Hongfu, WANG Bingbing. Underwater Image Enhancement Based on Parallel Guidance of Transformer and CNN [J]. Computer Engineering and Applications, 2024, 60(4): 280-288. |
[6] | ZHU Kai, LI Li, ZHANG Tong, JIANG Sheng, BIE Yiming. Survey of Vision Transformer in Low-Level Computer Vision [J]. Computer Engineering and Applications, 2024, 60(4): 39-56. |
[7] | JIN Haibo, MA Linlin, TIAN Guiyuan. Single Image Defogging Method Under Adaptive Transformer Network [J]. Computer Engineering and Applications, 2024, 60(3): 237-245. |
[8] | DENG Zhenrong, XIONG Yuxu, YANG Rui, CHEN Yuren. Improved YOLOv5 Helmet Wearing Detection Algorithm for Small Targets [J]. Computer Engineering and Applications, 2024, 60(3): 78-87. |
[9] | ZHANG Yingjun, BAI Xiaohui, XIE Binhong. Multi-Object Tracking Algorithm Based on CNN-Transformer Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(2): 180-190. |
[10] | SHEN Haiyun, WANG Haichuan, HUANG Zhongyi, YU Honghao. UAV Visual Tracking with Lightweight Transformer [J]. Computer Engineering and Applications, 2024, 60(2): 244-253. |
[11] | WANG Yaowen, CHENG Junsheng, YANG Yu. Improved Semantic Segmentation Model and Its Application [J]. Computer Engineering and Applications, 2024, 60(2): 337-343. |
[12] | SHE Xiangyang, LIU Zhe, DONG Lihong. Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion [J]. Computer Engineering and Applications, 2024, 60(1): 198-206. |
[13] | LIN Wenlong, Alifu·Kuerban, CHEN Yixiao, YUAN Xu. ACFEM-RetinaNet Algorithm for Remote Sensing Image Target Detection [J]. Computer Engineering and Applications, 2024, 60(1): 245-253. |
[14] | JI Ruirui, XIE Yuhui, LUO Fengkai, MEI Yuan. Face Recognition Method Based on Improved Visual Transformer [J]. Computer Engineering and Applications, 2023, 59(8): 117-126. |
[15] | TIAN Xuewei, WANG Jiali, CHEN Ming, DU Shouqing. Improved SegFormer Network Based Method for Semantic Segmentation of Remote Sensing Images [J]. Computer Engineering and Applications, 2023, 59(8): 217-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||