[1] 吴宗友, 白昆龙, 杨林蕊, 等. 电子病历文本挖掘研究综述[J]. 计算机研究与发展, 2021, 58(3): 513-527.
WU Z Y, BAI K L, YANG L R, et al. Review on textmining of electronic medical record[J]. Journal of Computer Research and Development, 2021, 58(3): 513-527.
[2] LIU K, HU Q, LIU J, et al. Named entity recognition in Chinese electronic medical records based on CRF[C]//2017 14th Web Information Systems and Applications Conference (WISA), 2017: 105-110.
[3] 王珅. 基于嵌套命名实体识别的肿瘤知识图谱构建[D]. 北京: 北京交通大学, 2020.
WANG S. Construction of tumor knowledge graph based on nested named entity recognition[D]. Beijing: Beijing Jiaotong University, 2020.
[4] ZHANG N, CHEN M, BI Z, et al. Cblue: a Chinese biomedical language understanding evaluation benchmark[J]. arXiv:2106.08087, 2021.
[5] LI J, SUN A, HAN J, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 50-70.
[6] CUI L, ZHANG Y. Hierarchically-refined label attention network for sequence labeling[J]. arXiv:1908.08676, 2019.
[7] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[J]. arXiv:1706.05075, 2017.
[8] HE L, YANG Z, LIN H, et al. Drug name recognition in biomedical texts: a machine-learning-based method[J]. Drug Discovery Today, 2014, 19(5): 610-617.
[9] LUO L, YANG Z, YANG P, et al. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition[J]. Bioinformatics, 2018, 34(8): 1381-1388.
[10] ZHAO S, LIU T, ZHAO S, et al. A neural multi-task learning framework to jointly model medical named entity recognition and normalization[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 817-824.
[11] 李冬梅, 罗斯斯, 张小平, 等. 命名实体识别方法研究综述[J]. 计算机科学与探索, 2022, 16(9): 1954-1968.
LI D M, LUO S S, ZHANG X P, et al. Review on named entity recognition[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(9): 1954-1968.
[12] JU M, MIWA M, ANANIADOU S. A neural layered model for nested named entity recognition[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018: 1446-1459.
[13] SOHRAB M G, MIWA M. Deep exhaustive model for nested named entity recognition[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 2843-2849.
[14] SHEN Y, MA X, TAN Z, et al. Locate and label: a two-stage identifier for nested named entity recognition[J]. arXiv:2105.
06804, 2021.
[15] TAN C, QIU W, CHEN M, et al. Boundary enhanced neural span classification for nested named entity recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 9016-9023.
[16] ZHENG C, CAI Y, XU J, et al. A boundary-aware neural model for nested named entity recognition[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019.
[17] LIU Z, YANG M, WANG X, et al. Entity recognition from clinical texts via recurrent neural network[J]. BMC Medical Informatics and Decision Making, 2017, 17(2): 53-61.
[18] UNANUE I J, BORZESHI E Z, PICCARDI M. Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition[J]. Journal of Biomedical Informatics, 2017, 76: 102-109.
[19] ZHANG N, JIA Q, YIN K, et al. Conceptualized representation learning for Chinese biomedical text mining[J]. arXiv:2008.10813, 2020.
[20] XU K, ZHOU Z, HAO T, et al. A bidirectional LSTM and conditional random fields approach to medical named entity recognition[C]//International Conference on Advanced Intelligent Systems and Informatics. Cham: Springer, 2017: 355-365.
[21] TANG B, WANG X, YAN J, et al. Entity recognition in Chinese clinical text using attention-based CNN-LSTM-CRF[J]. BMC Medical Informatics and Decision Making, 2019, 19(3): 89-97.
[22] CAI Q. Research on Chinese naming recognition model based on BERT embedding[C]//2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), 2019: 1-4.
[23] JIANG S, ZHAO S, HOU K, et al. A BERT-BiLSTM-CRF model for Chinese electronic medical records named entity recognition[C]//2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), 2019: 166-169. |