[1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1): 1-14.
LI K Q, DAI Y F, LI S B, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1): 1-14.
[2] 王洪斌, 郝策, 张平, 等. 基于A*算法和人工势场法的移动机器人路径规划[J]. 中国机械工程, 2019, 30(20): 2489-2496.
WANG H B, HAO C, ZHANG P, et al. Path planning for mobile robot based on A* algorithm and artificial potential field algorithm[J]. China Mechanical Engineering, 2019, 30(20): 2489-2496.
[3] GONZALEZ D, PEREZ J, MILANES V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 17(4): 1-11.
[4] DIJKSTRA E W. A note on two problems in connexion withgraphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
[5] HARTPE, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems science & Cybernetics, 1972, 4(2): 28-29.
[6] BOHREN J, FOOTE T, KELLER J, et al. The Ben Franklin racing team’s entry in the 2007 DARPA urban challenge[J]. Journal of Field Robotics, 2008, 25(9): 598-614.
[7] 王红卫, 马勇, 谢勇, 等.基于平滑A*算法的移动机器人路径规划[J]. 同济大学学报(自然科学版), 2010, 38(11): 1647-1650.
WANG H W, MA Y, XIE Y, et al. Mobile robot optimal path planning based on smoothing A* algorithm[J]. Journal of Tongji University(Natural Science), 2010, 38(11): 1647-1650.
[8] KHATIB O. Real-time obstacle avoidance system for ma-nipulators and mobile robots[J]. International Journal of Robotics Research, 1986, 5(1): 90-98.
[9] 刘梓林, 黎予生, 郑玲. 基于非结构化环境点云稀疏表示的无人驾驶汽车局部路径规划方法[J]. 机械工程学报, 2020, 56(2): 163-173.
LIU Z L, LI Y S, ZHENG L. Local path planning for autonomous vehicles based on sparse representation of point cloud in unstructured environments[J]. Journal of Mechanical Engineering, 2020, 56(2): 163-173.
[10] MOHAMED E, MILAN S. Sampling-based robot motion planning: a review[J]. IEEE Access, 2014, 2(1): 56-77.
[11] 冯来春, 梁华为, 杜明博, 等. 基于A*引导域的RRT智能车辆路径规划算法[J]. 计算机系统应用, 2017, 26(8): 127-133.
FENG L C, LIANG H W, DU M B, et al. Guiding-area RRT path planning algorithm based on A* for intelligent vehicle[J]. Computer Systems & Application, 2017, 26(8): 127-133.
[12] JEON J H, COWLAGI R V, PETERS S C, et al. Optimal motion planning with the half-car dynamical model for autonomous high?speed driving[C]//American Control Conference, Washington, DC, USA, 2013: 188-193.
[13] WERLING M, ZIEGLER J, KAMMEL S, et al. Optimal trajectory generation for dynamic street scenarios in a Frenet frame[C]//2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 2010: 987-993.
[14] 张荣辉, 游峰, 初鑫男, 等.车-车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191.
ZHANG R H, YOU F, CHU X N, et al. Lane change merging control method for unmanned vehicle under V2V cooperative environment[J]. China Journal of Highway and Transport, 2018, 31(4): 180-191.
[15] BEMPORAD A, ROCCHI C. Decentralized linear time-varying model predictive control of a formation of unmanned aerial vehicles[C]//2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), FL, USA, 2011: 7488-7493.
[16] 韩月起, 张凯, 宾洋, 等. 基于凸近似的避障原理及无人驾驶车辆路径规划模型预测算法[J]. 自动化学报, 2020, 46(1): 153-167.
HAN Y Q, ZHANG K, BIN Y. et al. Convex approximation based avoidance theory and path planning MPC for driver-less vehicles[J]. Acta Automatic Sinica, 2020, 46(1): 153-167.
[17] 魏民祥, 滕德成, 吴树凡. 基于Frenet坐标系的自动驾驶轨迹规划与优化算法[J]. 控制与决策, 2021, 36(4): 815-824.
WEI M X, TENG D C, WU S F. Trajectory planning and optimization algorithm for automated driving based on Frenet coordinate system[J]. Control and Decision, 2021, 36(4): 815-824.
[18] 李佩杰, 陆镛, 白晓清, 等. 基于交替方向乘子法的动态经济调度分散式优化[J]. 中国电机工程学报, 2015, 35(10): 2428-2435.
LI P J, LU Y, BAI X Q, et al. Decentralized optimization for dynamic economic dispatch based on alternating direction method of multipliers[J]. Proceedings of the CSEE, 2015, 35(10): 2428-2435.
[19] 袁春, 龚城, 何成诚, 等. Frenet坐标系及凸近似避障原理的无人车局部路径规划[J]. 重庆理工大学学报 (自然科学), 2022, 36(4): 59-67.
YUAN C, GONG C, HE C C, et al. Local path planning for unmanned vehicles based on Frenet coordinate system and convex approximate obstacle avoidance principle[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36(4): 59-67.
[20] 赵雪淞. 智能车辆换道轨迹规划与跟踪控制算法研究[D]. 长春: 吉林大学, 2022.
ZHAO X S. Research on lane -change trajectory planning and tracking control algorithms of intelligent vehicle[D]. Changchun: Jilin University, 2022. |