[1] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5): 426-438.
ZHANG Y Z, RONG L, SONG D W, et al. A survey on multimodal sentiment analysis[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(5): 426-438.
[2] ZADEH A, ZELLERS R, PINCUS E, et al. Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages[J]. IEEE Intelligent Systems, 2016, 31(6): 82-88.
[3] KAUR R, KAUTISH S. Multimodal sentiment analysis: a survey and comparison[J]. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 2019, 10(2): 38-58.
[4] XU N, MAO W. Multisentinet: a deep semantic network for multimodal sentiment analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 2399-2402.
[5] ZHANG K E, ZHU Y, ZHANG W, et al. Cross-modal image sentiment analysis via deep correlation of textual semantic[J]. Knowledge-Based Systems, 2021, 216: 106803.
[6] 刘路路, 杨燕, 王杰. ABAFN: 面向多模态的方面级情感分析模型[J]. 计算机工程与应用, 2022, 58(10): 193-199.
LIU L L, YANG Y, WANG J. ABAFN: aspect-based sentiment analysis model for multimodal[J]. Computer Engineering and Applications, 2022, 58(10): 193-199.
[7] YANG B, SHAO B, WU L, et al. Multimodal sentiment analysis with unidirectional modality translation[J]. Neurocomputing, 2022, 467: 130-137.
[8] HUANG Z, LIU F, WU X, et al. Audio-oriented multimodal machine comprehension via dynamic inter-and intra-modality attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Virtual Event, Feb 2-9, 2021. Menlo Park, CA: Association for the Advancement of Artificial Intelligence, 2021: 13098-13106.
[9] KUMAR A, VEPA J. Gated mechanism for attention based multi modal sentiment analysis[C]//ICASSP 2020: International Conference on Acoustics, Speech and Signal Processing, Virtual Barcelona, May 4-8, 2020. Piscataway, NJ: IEEE, 2020: 4477-4481.
[10] WEN H, YOU S, FU Y. Cross-modal context-gated convolution for multi-modal sentiment analysis[J]. Pattern Recognition Letters, 2021, 146: 252-259.
[11] LI Z, GUO Q, FENG C, et al. Multimodal sentiment analysis based on interactive transformer and soft mapping[J]. Wireless Communications and Mobile Computing, 2022: 6243347.
[12] GHORBANALI A, SOHRABI M K, YAGHMAEE F. Ensemble transfer learning-based multimodal sentiment analysis using weighted convolutional neural networks[J]. Information Processing & Management, 2022, 59(3): 102929.
[13] ZADEH A, CHEN M, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[J]. arXiv:1707. 07250, 2017.
[14] YAN X, XUE H, JIANG S, et al. Multimodal sentiment analysis using multi?tensor fusion network with cross-modal modeling[J]. Applied Artificial Intelligence, 2021: 1-16.
[15] PENG C, ZHANG C, XUE X, et al. Cross-modal complementary network with hierarchical fusion for multimodal sentiment classification[J]. Tsinghua Science and Technology, 2021, 27(4): 664-679.
[16] 张峰, 李希城, 董春茹, 等. 基于深度情感唤醒网络的多模态情感分析与情绪识别[J]. 控制与决策, 2022, 37(11): 2984-2992.
ZHANG F, LI X C, DONG C R, et al. Deep emotional arousal network for multimodal sentiment analysis and emotion recognition[J]. Control and Decision, 2022, 37(11): 2984-2992.
[17] TANG J, LI K, JIN X, et al. CTFN: hierarchical learning for multimodal sentiment analysis using coupled-translation fusion network[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Virtual Event, Aug 1-6, 2021. New York: Association for Computing Linguistics, 2021: 5301-5311.
[18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[19] ZADEH A A B, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, July 15-20, 2018. Stroudsburg, PA: Association for Computational Linguistics, 2018: 2236-2246.
[20] PORIA S, CAMBRIA E, HAZARIKA D, et al. Context-dependent sentiment analysis in user-generated videos[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vancouver, Jul 30-Aug 4, 2017. New York: Association for Computational Linguistics, 2017: 873-883.
[21] WANG Y, SHEN Y, LIU Z, et al. Words can shift: dynamically adjusting word representations using nonverbal behaviors[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, Jan 27- Feb 1, 2019. Menlo Park: AAAI, 2019, 33(1): 7216-7223.
[22] PHAM H, LIANG P P, MANZINI T, et al. Found in translation: learning robust joint representations by cyclic translations between modalities[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, Jan 27- Feb 1, 2019. Menlo Park: AAAI, 2019: 6892-6899.
[23] HUANG J, LIN Z, YANG Z, et al. Temporal graph convolutional network for multimodal sentiment analysis[C]//Proceedings of the 2021 International Conference on Multimodal Interaction, Oct 18 2021. New York: Association for Computing Machinery, 2021: 239-247.
[24] Li Q, GKOUMAS D, LIOMA C, et al. Quantum-inspired multimodal fusion for video sentiment analysis[J]. Information Fusion, 2021, 65: 58-71. |