Research on Multi-Target Animal Pose Estimation Based on Improved High Resolution Network
XU Guidong, XU Yang, DENG Hui, MO Han
1.College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
2.Guiyang Aluminum-Magnesium Design and Research Institute Co., Ltd., Guiyang 550009, China
XU Guidong, XU Yang, DENG Hui, MO Han. Research on Multi-Target Animal Pose Estimation Based on Improved High Resolution Network[J]. Computer Engineering and Applications, 2023, 59(22): 182-192.
[1] LI C,LEE G H.From synthetic to real:unsupervised domain adaptation for animal pose estimation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:1482-1491.
[2] NG X L,ONG K E,ZHENG Q,et al.Animal kingdom:a large and diverse dataset for animal behavior understanding[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:19023-19034.
[3] JIANG L,LEE C,TEOTIA D,et al.Animal pose estimation:a closer look at the state-of-the-art,existing gaps and opportunities[J].Computer Vision and Image Understanding,2022,222:103483.
[4] 漆愚,苏菡,侯蓉,等.基于高分辨率网络的大熊猫姿态估计方法[J].兽类学报,2022,42(4):451-460.
QI Y,SU H,HOU R,et al.Giant panda pose estimation method based on high resolution net[J].Acta Theriologica Sinica,2022,42(4):451-460.
[5] BARADEL F,WOLF C,MILLE J,et al.Glimpse clouds:human activity recognition from unstructured feature points[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:469-478.
[6] ARAC A,ZHAO P,DOBKIN B H,et al.DeepBehavior:a deep learning toolbox for automated analysis of animal and human behavior imaging data[J].Frontiers in Systems Neuroscience,2019,13:20.
[7] MAZHAR O,RAMDANI S,NAVARRO B,et al.Towards real-time physical human-robot interaction using skeleton information and hand gestures[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems,2018:1-6.
[8] ANDRILUKA M,PISHCHULIN L,GEHLER P,et al.2D human pose estimation:new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,2014:3686-3693.
[9] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision,Zurich,Sep 6-12,2014:740-755.
[10] 邓辉,徐杨.融入注意力和密集连接的轻量型人体姿态估计[J].计算机工程与应用,2022,58(16):265-273.
DENG H,XU Y.Lightweight human pose estimation based on attention and dense connection[J].Computer Engineering and Applications,2022,58(16):265-273.
[11] CAO J,TANG H,FANG H S,et al.Cross-domain adaptation for animal pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision,2019:9498-9507.
[12] MU J,QIU W,HAGER G D,et al.Learning from synthetic animals[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12386-12395.
[13] LAUER J,ZHOU M,YE S,et al.Multi-animal pose estimation,identification and tracking with DeepLabCut[J].Nature Methods,2022,19(4):496-504.
[14] YU H,XU Y,ZHANG J,et al.AP-10K:a benchmark for animal pose estimation in the wild[J].arXiv:2108.12617,2021.
[15] 张雯雯,徐杨,白芮,等.基于改进堆叠沙漏网络的动物姿态估计[J].计算机工程,2023,49(2):263-270.
ZHANG W W,XU Y,BAI R,et al.Animal pose estimation based on improved stacked hourglass network[J].Computer Engineering,2023,49(2):263-270.
[16] ZHOU F,JIANG Z,LIU Z,et al.Structured context enhancement network for mouse pose estimation[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(5):2787-2801.
[17] NEWELL A,YANG K,DENG J.Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision,Amsterdam,Oct 11-14,2016:483-499.
[18] CHEN Y,WANG Z,PENG Y,et al.Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7103-7112.
[19] XIAO B,WU H,WEI Y.Simple baselines for human pose estimation and tracking[C]//Proceedings of the 15th European Conference on Computer Vision,2018:466-481.
[20] SUN K,XIAO B,LIU D,et al.Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5693-5703.
[21] CHENG B,XIAO B,WANG J,et al.HigherHRNet:scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5386-5395.
[22] LIU H,LIU F,FAN X,et al.Polarized self-attention:towards high-quality pixel-wise regression[J].arXiv:2107.
00782,2021.
[23] PAN X,GE C,LU R,et al.On the integration of self-attention and convolution[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:815-825.
[24] GUO M H,XU T X,LIU J J,et al.Attention mechanisms in computer vision:a survey[J].Computational Visual Media,2022,8(3):331-368.
[25] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[26] CHEN L,ZHANG H,XIAO J,et al.SCA-CNN:spatial and channel-wise attention in convolutional networks for image captioning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:5659-5667.
[27] WOO S,PARK J,LEE J Y,et al.CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision,2018:3-19.
[28] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[29] YUAN Y,FU R,HUANG L,et al.HRFormer:high-resolution vision transformer for dense predict[C]//Advances in Neural Information Processing Systems 34,2021:7281-7293.