ZHANG Yu, LIANG Fengmei, LIU Jianxia. Skin Lesion Segmentation Based on Classification Activation Mapping and Visual Field Attention[J]. Computer Engineering and Applications, 2023, 59(21): 187-194.
[1] FONTANILLAS P,ALIPANAHI B,FURLOTTE N A,et al.Disease risk scores for skin cancers[J].Nature Communications,2021,12(1):1-13.
[2] 王慧,戚倩倩,李雪,等.皮肤肿瘤图像自动分类的研究进展[J].计算机工程与应用,2022,58(16):31-48.
WANG H,QI Q Q,LI X,et al.Research progress in automatic classification of skin lesions images[J].Computer Engineering and Applications,2022,58(16):31-48.
[3] 陈海鹏,申铉京,龙建武.采用高斯拟合的全局阈值算法阈值优化框架[J].计算机研究与发展,2016,53(4):892-903.
CHEN H P,SHEN X J,LONG J W.Threshold optimization framework of global thresholding algorithmsusing Gaussian fitting[J].Journal of Computer Research and Development,2016,53(4):892-903.
[4] AHN E,KIM J,BI L,et al.Saliency-based lesion segmentation via background detection in dermoscopic images[J].IEEE Journal of Biomedical and Health Informatics,2017,21(6):1685-1693.
[5] 张明慧,卢振泰,张娟,等.基于多图谱活动轮廓模型的脑部图像分割[J].计算机学报,2016,39(7):1490-1500.
ZHANG M H,LU Z T,ZHANG J,et al.Brain image segmentation based on multiple atlas active contour model[J].Chinese Journal of Computers,2016,39(7):1490-1500.
[6] BI L,KIM J,AHN E,et al.Dermoscopic image segmentation via multistage fully convolutional networks[J].IEEE Transactions on Biomedical Engineering,2017,64(9):2065-2074.
[7] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected crfs[J].arXiv:1412.7062,2014.
[8] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:801-818.
[9] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
[10] ABRAHAM N,KHAN N M.A novel focal tversky loss function with improved attention u-net for lesion segmentation[C]//2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019),2019:683-687.
[11] TONG X,WEI J,SUN B,et al.ASCU-Net:attention gate,spatial and channel attention u-net for skin lesion segmentation[J].Diagnostics,2021,11(3):501.
[12] 王雪.基于U-Net多尺度和多维度特征融合的皮肤病变分割方法[J].吉林大学学报(理学版),2021,59(1):123-127.
WANG X.Skin lesion segmentation method based on U-Net with multi-scale and multi-dimensional feature fusion[J].Journal of Jilin University(Science Edition),2021,59(1):123-127.
[13] ASHRAF H,WARIS A,GHAFOOR M F,et al.Melanoma segmentation using deep learning with test-time augmentations and conditional random fields[C]//Scientific Reports,2022,12(1):1-16.
[14] ZHANG Z,SABUNCU M.Generalized cross entropy loss for training deep neural networks with noisy labels[C]//Advances in Neural Information Processing Systems,2018.
[15] MA J,CHEN J,NG M,et al.Loss odyssey in medical image segmentation[J].Medical Image Analysis,2021,71:102035.
[16] MILLETARI F,NAVAB N,AHMADI S A.V-net:fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision(3DV),2016:565-571.
[17] XIE Y,ZHANG J,XIA Y,et al.A mutual bootstrapping model for automated skin lesion segmentation and classification[J].IEEE Transactions on Medical Imaging,2020,39(7):2482-2493.
[18] ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2921-2929.
[19] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1251-1258.
[20] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks,2020 IEEE[C]//CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[21] CODELLA N C F,GUTMAN D,CELEBI M E,et al.Skin lesion analysis toward melanoma detection:a challenge at the 2017 international symposium on biomedical imaging(isbi),hosted by the international skin imaging collaboration(isic)[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018),2018:168-172.
[22] MENDON?A T,FERREIRA P M,MARQUES J S,et al.PH 2-A dermoscopic image database for research and benchmarking[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC),2013:5437-5440.
[23] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems,2012.
[24] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755.
[25] GOYAL M,OAKLEY A,BANSAL P,et al.Skin lesion segmentation in dermoscopic images with ensemble deep learning methods[J].IEEE Access,2019,8:4171-4181.
[26] ZAFAR K,GILANI S O,WARIS A,et al.Skin lesion segmentation from dermoscopic images using convolutional neural network[J].Sensors,2020,20(6):1601.