[1] KAMEHKHOSH I,JANNACH D.User perception of next-track music recommendations[C]//Proceedings of the 25th Conference on User Modeling,Adaptation and Personalization,2017.
[2] CHOUDHURY S S,MOHANTY S N,JAGADEV A K. Multimodal trust based recommender system with machine learning approaches for movie recommendation[J].International Journal of Information Technology,2021,13(2):475-482.
[3] 耿化聪,梁宏涛,刘国柱.基于知识图谱与协同过滤的饮食推荐算法[J].计算机与现代化,2021(8):24-29.
GENG H C,LIANG H T,LIU G Z.Diet recommendation algorithm based on knowledge graph and collaborative filtering[J].Computer and Modernization,2021(8):24-29.
[4] RODRIGUEZ-PARDO C,PATRICIO M A,BERLANGA A,et al.Machinelearning for smart tourism and rctail[M]//Handbook of Researchon Eig Data Clustering and Machine Learning.Hershey:1G1Global,2020:311-333.
[5] YAO L,XU Z,ZHOU X,et al. Synergies between association rules and collaborative filtering in recommender system:an application to auto industry[J].Data Science and Digital Business,2019,2560:65-80.
[6] HUANG Y,HUANG W J,XIANG X L,et al.An empirical study of personalized advertising recommendation based on DBSCAN clustering of sina weibo user-generated content[J].Procedia Computer Science,2021,183(8):303-310.
[7] HUANG W,SU X,WU M,et al.Category,process,and recommendation of design in an interactive evolutionary computation interior design experiment:a data-driven study[J].Artificial Intelligence for Engineering Design Analysis and Manufacturing,2020,34(2):1-15.
[8] SANG L,XU M,QIAN S,et al.Knowledge graph enhanced neural collaborative recommendation[J].Expert Systems with Applications,2021,164(12):113992.
[9] YU B,ZHOU C,ZHANG C,et al.A privacy-preserving multi-task framework for knowledge graph enhanced recommendation[J].IEEE Access,2020,8:115717-115727.
[10] WANG H W,ZHANG F Z,XIE X,et al.DKN:deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference,Lyon,France,2018:1835-1844.
[11] CAO Y,WANG X,HE X,ET al.Unifying knowledge graph learning and recommendation:towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference,2019:151-161.
[12] SHA X,SUN Z,ZHANG J.Hierarchical attentive knowledge graph embedding for personalized recommendation[J].Electronic Commerce Research and Applications,2021,48:101071.
[13] SUN Z,YANG J,ZHANG J,et al.Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems,2018:297-305.
[14] HUANG X,FANG Q,QIAN S,et al.Explainable interaction-driven user modeling over knowledge graph for sequential recommendation[C]//Proceedings of the the 27th ACM International Conference,2019:548-556.
[15] WANG H,ZHANG F,WANG J,et al.RippleNet:propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management,Torino,Oct 22-26,2018.New York:ACM,2018:417-426.
[16] WANG H,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the World Wide Web Conference,San Francisco,May 13?17,2019.New York:ACM,2019:3307-3313.
[17] WANG X,HE X,CAO Y,et al.KGAT:knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,Anchorage,Aug 4-8,2019.New York:ACM,2019: 950-958.
[18] 樊海玮,张锐驰,安毅生,等.融合知识图谱邻居双端的在线学习资源推荐算法[J].计算机应用,2022(4):1-6.
FAN H W,ZHANG R C,AN Y S,et al.Online learning resource recommendation algorithm integrating both sides of knowledge graph neighborhood[J].Journal of Computer Applications,2022(4):1-6
[19] 李想,杨兴耀,于炯,等.基于知识图谱卷积网络的双端推荐算法[J].计算机科学与探索,2022,16(1):176-184.
LI X,YANG X Y,YU J,et al.Double end knowledge graph convolutional networks for recommender systems[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):176-184.
[20] 许杰,祝玉坤,邢春晓.基于深度强化学习的金融交易算法研究[J].计算机工程与应用,2022,58(7):276-285.
XU J,ZHU Y K,XING C X.Research on financial trading algorithm based on deep reinforcement learning[J].Computer Engineering and Applications,2022,58(7):276-285.
[21] 阎世宏,马为之,张敏,等.结合用户长短期兴趣的深度强化学习推荐方法[J].中文信息学报,2021,35(8):107-116.
YAN S H,MA W Z,ZHANG M,et al.Deep reinforcement learning recommendation method combined with users’ long-term and short-term interests[J].Chinese Journal of Information,2021,35(8):107-116.
[22] 史存会,胡耀康,冯彬,等.舆情场景下基于层次知识的话题推荐方法[J].计算机研究与发展,2021,58(8):1811-1819.
SHI C H,HU Y K,FENG B,et al.A hierarchical knowledge based topic recommendation method in public opinion scenario[J].Journal of Computer Research and Development,2021,58(8):1811-1819.
[23] WANG Z,LIN G Y,TAN H B,et al.CKAN:collaborative knowledge-aware attentive network for recommender systems[C]//Proceedings of the 43st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York:ACM,2020:219-228.
[24] WANG H,ZHANG F,ZHANG M,et al.Knowledge aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,Anchorage Aug 4-8,2019. New York:ACM,2019:968-977.
[25] TU K,CUI P,WANG D X,et al.Conditional attention networks for distilling knowledge graphs in recommendation[J].arXiv:2111.02100,2021.