Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (19): 10-20.DOI: 10.3778/j.issn.1002-8331.2301-0088
• Research Hotspots and Reviews • Previous Articles Next Articles
CUI Wei, ZHU Fazheng
Online:
2023-10-01
Published:
2023-10-01
崔炜,朱发证
CUI Wei, ZHU Fazheng. Review of Path Planning Algorithms for Robot Navigation[J]. Computer Engineering and Applications, 2023, 59(19): 10-20.
崔炜, 朱发证. 机器人导航的路径规划算法研究综述[J]. 计算机工程与应用, 2023, 59(19): 10-20.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2301-0088
[1] WANG K,XU J,SONG K,et al.Informed anytime Bi-directional fast marching tree for optimal motion planning in complex cluttered environments[J].Expert Systems with Applications,2023,215:119263. [2] TOUZANI H,HADJ-ABDELKADER H,SéGUY N,et al.Multi-robot task sequencing & automatic path planning for cycle time optimization:application for car production line[J].IEEE Robotics and Automation Letters,2021,6(2):1335-1342. [3] SUH J,GONG J,OH S.Fast sampling-based cost-aware path planning with nonmyopic extensions using cross entropy[J].IEEE Transactions on Robotics,2017,33(6):1313-1326. [4] ZHANG Z,WU L,ZHANG W,et al.Energy-efficient path planning for a single-load automated guided vehicle in a manufacturing workshop[J].Computers & Industrial Engineering,2021,158:107397. [5] PHUNG M D,HA Q P.Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J].Applied Soft Computing,2021,107:107376. [6] 林韩熙,向丹,欧阳剑,等.移动机器人路径规划算法的研究综述[J].计算机工程与应用,2021,57(18):38-48. LIN H X,XIANG D,OUYANG J,et al.Review of path planning algorithms for mobile robots[J].Computer Engineering and Applications,2021,57(18):38-48. [7] GONZALEZ D,PEREZ J,MILANES V,et al.A review of motion planning techniques for automated vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(4):1135-1145. [8] GAMMELL J D,BARFOOT T D,SRINIVASA S S.Batch Informed Trees(BIT*):informed asymptotically optimal anytime search[J].The International Journal of Robotics Research,2020,39(5):543-567. [9] 王梓强,胡晓光,李晓筱,等.移动机器人全局路径规划算法综述[J].计算机科学,2021,48(10):19-29. WANG X Q,HU X G,LI X X,et al.Overview of global path planning algorithms for mobile robots[J].Computer Science,2021,48(10):19-29. [10] DIJKSTRA E W.A note on two problems in connexion with graphs[J].Numerische Mathematik,1959,1(1):269-271. [11] HART P E,NILSSON N J,RAPHAEL B.A formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics(T-SSC),1968,4(2):100-107. [12] LI C,HUANG X,DING J,et al.Global path planning based on a bidirectional alternating search A* algorithm for mobile robots[J].Computers & Industrial Engineering,2022,168:108123. [13] LIKHACHEV M,GORDON G,THRUN S.ARA*:anytime A* with provable bounds on sub-optimality[C]// Advances in Neural Information Processing Systems,2003. [14] STENTZ A.Optimal and efficient path planning for partially-known environments[C]//Proccedings of the IEEE International Conference on Robotics and Automation,1994:3310-3317. [15] KOENIG S,LIKHACHEV M,FURCY D.Lifelong planning A*[J].Artificial Intelligence,2004,155(1/2):93-146. [16] KOENIG S,LIKHACHEV M.D* lite[C]//Proccedings of the Eighteenth National Conference on Artificial Intelligence,2002:476-483. [17] LIKHACHEV M,FERGUSON D I,GORDON G J,et al.Anytime dynamic A*:an anytime,replanning algorithm[C]//Proccedings of the Fifteenth International Conference on Automated Planning and Scheduling(ICAPS),2005:262-271. [18] HOLLAND,JOHN H.Outline for a logical theory of adaptive systems[J].Journal of the ACM,1962,9(3):297-314. [19] 徐力,刘云华,王启富.自适应遗传算法在机器人路径规划的应用[J].计算机工程与应用,2020,56(18):36-41. XU L,LIU Y H,WANG Q F.Application of adaptive genetic algorithm in robot path planning[J].Computer Engineering and Applications,2020,56(18):36-41. [20] PEHLIVANOGLU Y V,PEHLIVANOGLU P.An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems[J].Applied Soft Computing,2021,112:107796. [21] HAO K,ZHAO J,WANG B,et al.The application of an adaptive genetic algorithm based on collision detection in path planning of mobile robots[J].Computational Intelligence and Neuroscience,2021(5):1-20. [22] DORIGO M,MANIEZZO V,COLORNI A.The ant system:an autocatalytic optimizing process:Technical Report 91-016[R].1991. [23] LUO Q,WANG H,ZHENG Y,et al.Research on path planning of mobile robot based on improved ant colony algorithm[J].Neural Computing and Applications,2020,32(6):1555-1566. [24] MIAO C,CHEN G,YAN C,et al.Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J].Computers & Industrial Engineering,2021,156:107230. [25] LIU J,ANAVATTI S,GARRATT M,et al.Modified continuous ant colony optimisation for multiple unmanned ground vehicle path planning[J].Expert Systems with Applications,2022,196:116605. [26] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proccedings of the International Conference on Neural Networks,1995:1942-1948. [27] 杨旭,王锐,张涛.面向无人机集群路径规划的智能优化算法综述[J].控制理论与应用,2020,37(11):2291-302. YANG X,WANG R,ZHANG T.Review of unmanned aerial vehicle swarm path planning based on intelligent optimization[J].Control Theory & Applications,2020,37(11):2291-2302. [28] YU Z,SI Z,LI X,et al.A novel hybrid particle swarm optimization algorithm for path planning of UAVs[J].IEEE Internet of Things Journal,2022,9(22):22547-22558. [29] FERNANDES P B,OLIVEIRA R,NETO J F.Trajectory planning of autonomous mobile robots applying a particle swarm optimization algorithm with peaks of diversity[J].Applied Soft Computing,2022,116:108108. [30] YANG X S.Nature-inspired metaheuristic algorithms[M].UK:Luniver Press,2010. [31] KUMAR V,KUMAR D.A systematic review on firefly algorithm:past,present,and future[J].Archives of Computational Methods in Engineering,2021,28(4):3269-3291. [32] LI J,WEI X,LI B,et al.A survey on firefly algorithms[J].Neurocomputing,2022,500:662-678. [33] PATLE B,PANDEY A,JAGADEESH A,et al.Path planning in uncertain environment by using firefly algorithm[J].Defence Technology,2018,14(6):691-701. [34] XU G,ZHANG T W,LAI Q,et al.A new path planning method of mobile robot based on adaptive dynamic firefly algorithm[J].Modern Physics Letters B,2020,34:2050322. [35] LI F,FAN X,HOU Z.A firefly algorithm with self-adaptive population size for global path planning of mobile robot[J].IEEE Access,2020,8:168951-168964. [36] ZHANG T W,XU G H,ZHAN X S,et al.A new hybrid algorithm for path planning of mobile robot[J].The Journal of Supercomputing,2022,78(3):4158-4181. [37] MIRJALILI S,MIRJALILI S M,LEWIS A.Grey wolf optimizer[J].Advances in Engineering Software,2014,69:46-61. [38] MIRJALILI S,SAREMI S,MIRJALILI S M,et al.Multi-objective grey wolf optimizer:a novel algorithm for multi-criterion optimization[J].Expert Systems with Applications,2016,47:106-119. [39] GUPTA S,DEEP K.A novel random walk grey wolf optimizer[J].Swarm and evolutionary Computation,2019,44:101-112. [40] NADIMI-SHAHRAKI M H,TAGHIAN S,MIRJALILI S.An improved grey wolf optimizer for solving engineering problems[J].Expert Systems with Applications,2021,166:113917. [41] FARAMARZI A,HEIDARINEJAD M,MIRJALILI S,et al.Marine predators algorithm:a nature-inspired metaheuristic[J].Expert Systems with Applications,2020,152:113377. [42] SHABANI A,ASGARIAN B,SALIDO M,et al.Search and rescue optimization algorithm:a new optimization method for solving constrained engineering optimization problems[J].Expert Systems with Applications,2020,161:113698. [43] 张贝,闵华松,张新明.改进海洋捕食者算法和插值平滑的机器人路径规划[J].计算机应用研究,2023(7):2082-2089. ZHANG B,MIN H S,ZHANG X M.Robot path planning based on improved marine predators algorithm and interpolation smoothing[J].Application Research of Computers,2023(7):2082-2089. [44] 周文娟,张超群,汤卫东,等.一种新的基于强化学习改进SAR的无人机路径规划[J/OL].控制与决策(2023-02-07)[2023-03-18].https://doi.org/10.13195/j.kzyjc.2022.1209. ZHOU W J,ZHANG C Q,TANG W D,et al.A novel modified search and rescue optimization algorithm based on reinforcement learning for UAV path planning[J/OL].Control and Decision(2023-02-07)[2023-03-18].https://doi.org/10.13195/j.kzyjc.2022.1209. [45] ZHANG C,ZHOU W,QIN W,et al.A novel UAV path planning approach:Heuristic crossing search and rescue optimization algorithm[J].Expert Systems with Applications,2023,215:119243. [46] AKBARI M A,ZARE M,AZIZIPANAH-ABARGHOOEE R,et al.The cheetah optimizer:a nature-inspired metaheuristic algorithm for large-scale optimization problems[J].Scientific Reports,2022,12(1):10953. [47] 郭启程,杜晓玉,张延宇,等.基于改进鲸鱼算法的无人机三维路径规划[J].计算机科学,2021,48(12):304-311. GUO Q C,DU X Y,ZHANG Y Y,et al.Three-dimensional path planning of UAV based on improved whale optimization algorithm[J].Computer Science,2021,48(12):304-311. [48] 李丹.改进群智能优化算法的海上物流配送路径优化方法[J].舰船科学技术,2020,42(16):184-186. LI D.Optimization method of marine logistics distribution path based on improved swarm intelligence optimization algorithm[J].Ship Science and Technology,2020,42(16):184-186. [49] 李珺,段钰蓉,郝丽艳,等.混合优化算法求解同时送取货车辆路径问题[J].计算机科学与探索,2022,16(7):1623-1632. LI J,DUAN Y R,HAO L Y,et al.Hybrid optimization algorithm for vehicle routing problem with simultaneous delivery-pickup[J].Journal of Frontiers of Computer Science and Technology,2022,16(7):1623-1632. [50] MOHANAN M,SALGOANKAR A.A survey of robotic motion planning in dynamic environments[J].Robotics and Autonomous Systems,2018,100:171-185. [51] KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[J].The International Journal of Robotics Research,1986,5(1):90-98. [52] DUHE J F,VICTOR S,MELCHIOR P.Contributions on artificial potential field method for effective obstacle avoidance[J].Fractional Calculus and Applied Analysis,2021,24(2):421-446. [53] TIAN Y,ZHU X,MENG D,et al.An overall configuration planning method of continuum hyper-redundant manipulators based on improved artificial potential field method[J].IEEE Robotics and Automation Letters,2021,6(3):4867-4874. [54] SANG H,YOU Y,SUN X,et al.The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J].Ocean Engineering,2021,223:108709. [55] SOUZA R M J A,LIMA G V,MORAIS A S,et al.Modified artificial potential field for the path planning of aircraft swarms in three-dimensional environments[J].Sensors,2022,22(4):1558. [56] KASHYAP A K,PARHI D R,MUNI M K,et al.A hybrid technique for path planning of humanoid robot NAO in static and dynamic terrains[J].Applied Soft Computing,2020,96:106581. [57] FOX D,BURGARD W,THRUN S.The dynamic window approach to collision avoidance[J].IEEE Robotics & Automation Magazine,1997,4(1):23-33. [58] JIN Q B,TANG C N,CAI W.Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method[J].IEEE Access,2022,10:28322-28332. [59] OGREN P,LEONARD N E.A convergent dynamic window approach to obstacle avoidance[J].IEEE Transactions on Robotics,2005,21(2):188-195. [60] LEE D H,LEE S S,AHN C K,et al.Finite distribution estimation-based dynamic window approach to reliable obstacle avoidance of mobile robot[J].IEEE Transactions on Industrial Electronics,2021,68(10):9998-10006. [61] MOLINOS E J,LLAMAZARES á,OCA?A M.Dynamic window based approaches for avoiding obstacles in moving[J].Robotics and Autonomous Systems,2019,118:112-130. [62] CHANG L,SHAN L,JIANG C,et al.Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment[J].Autonomous Robots,2021,45(1):51-76. [63] WANG X,MA X,LI X,et al.Target-biased informed trees:sampling-based method for optimal motion planning in complex environments[J].Journal of Computational Design and Engineering,2022,9(2):755-771. [64] LAVALLE S M,KUFFNER J J.Randomized kinodynamic planning[J].The International Journal of Robotics Research,2001,20(5):378-400. [65] KARAMAN S,FRAZZOLI E.Sampling-based algorithms for optimal motion planning[J].The International Journal of Robotics Research,2011,30(7):846-894. [66] JANSON L,SCHMERLING E,CLARK A,et al.Fast marching tree:a fast marching sampling-based method for optimal motion planning in many dimensions[J].The International Journal of Robotics Research,2015,34(7):883-921. [67] GAMMELL J D,SRINIVASA S S,BARFOOT T D.Batch informed trees(BIT*):sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs[C]//Proceedings of the IEEE International Conference on Robotics and Automation,2015:3067-3074. [68] WANG J K,MENG M Q H,KHATIB O.EB-RRT:optimal motion planning for mobile robots[J].IEEE Transactions on Automation Science and Engineering,2020,17(4):2063-2073. [69] CHI W Z,DING Z Y,WANG J K,et al.A generalized voronoi diagram-based efficient heuristic path planning method for rrts in mobile robots[J].IEEE Transactions on Industrial Electronics,2022,69(5):4926-4937. [70] 曹凯,陈阳泉,高嵩,等.涡流人工势场引导下的RRT*移动机器人路径规划[J].计算机科学与探索,2021,15(4):723-732. CAO K,CHEN Y Q,GAO S,et al.Vortex artificial-potential-field guided RRT* for path planning of mobile robot[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):723-732. [71] ARSLAN O,TSIOTRAS P.Dynamic programming guided exploration for sampling-based motion planning algorithms[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2015:4819-4826. [72] OTTE M,FRAZZOLI E.RRTX:asymptotically optimal single-query sampling-based motion planning with quick replanning[J].The International Journal of Robotics Research,2016,35(7):797-822. [73] LIAO B,WAN F Y,HUA Y,et al.F-RRT*:an improved path planning algorithm with improved initial solution and convergence rate[J].Expert Systems with Applications,2021,184:115457. [74] KUFFNER J J,LAVALLE S M.RRT-connect:an efficient approach to single-query path planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation Symposia Proceedings(Cat No00CH37065),2000:995-1001. [75] WANG J K,CHI W Z,LI C M,et al.Efficient robot motion planning using bidirectional-unidirectional rrt extend function[J].IEEE Transactions on Automation Science and Engineering,2021,19(3):1859-1868. [76] GAMMELL J D,SRINIVASA S S,BARFOOT T D.Informed RRT*:optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,2014:2997-3004. [77] ZHONG C,LIU H.A region-specific hybrid sampling method for optimal path planning[J].International Journal of Advanced Robotic Systems,2016,13(2):71. [78] SALZMAN O,HALPERIN D.Asymptotically-optimal motion planning using lower bounds on cost[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2015:4167-4172. [79] STAREK J,SCHMERLING E,JANSON L,et al.Bidirectional fast marching trees:an optimal sampling-based algorithm for bidirectional motion planning[C]//Proceedings of the Workshop on Algorithmic Foundations of Robotics,2015. [80] REID W,FITCH R,G?KTO?AN A H,et al.Sampling-based hierarchical motion planning for a reconfigurable wheel-on-leg planetary analogue exploration rover[J].Journal of Field Robotics,2020,37(5):786-811. [81] XU J,SONG K,DONG H,et al.A batch informed sampling-based algorithm for fast anytime asymptotically-optimal motion planning in cluttered environments[J].Expert Systems with Applications,2020,144:113124. [82] XU J,SONG K,ZHANG D,et al.Informed anytime fast marching tree for asymptotically optimal motion planning[J].IEEE Transactions on Industrial Electronics,2021,68(6):5068-5077. [83] WU Z,CHEN Y,LIANG J,et al.ST-FMT*:a fast optimal global motion planning for mobile robot[J].IEEE Transactions on Industrial Electronics,2022,69(4):3854-3864. [84] PENROSE M.Random geometric graphs[M].Oxford:Oxford University Press,2003. [85] AINE S,LIKHACHEV M.Truncated incremental search[J].Artificial Intelligence,2016,234:49-77. [86] HOLSTON A C,KIM D H,KIM J H.Fast-BIT:modified heuristic for sampling-based optimal planning with a faster first solution and convergence in implicit random geometric graphs[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics(ROBIO),2017:1892-1899. [87] STRUB M P,GAMMELL J D.Advanced BIT(ABIT):sampling-based planning with advanced graph-search techniques[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2020:130-136. [88] KYAW P T,ANH VU L,VEERAJAGADHESWAR P,et al.Energy-efficient path planning of reconfigurable robots in complex environments[J].IEEE Transactions on Robotics,2022:2481-2494. [89] STRUB M P,GAMMELL J D.Adaptively informed trees(AIT*):fast asymptotically optimal path planning through adaptive heuristics[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2020:3191-3198. [90] STRUB M P,GAMMELL J D.AIT* and EIT*:asymmetric bidirectional sampling-based path planning[J].arXiv:2111.01877,2021. [91] HARTMANN V N,M.P.STRUB M T,GAMMELL J D.Effort informed roadmaps(EIRM*):efficient asymptotically optimal multiquery planning by actively reusing validation effort[C]//Proceedings of the International Symposium on Robotics Research(ISRR),2022:555-571. [92] KAVRAKI L E,SVESTKA P,LATOMBE J C,et al.Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J].IEEE Transactions on Robotics and Automation,1996,12(4):566-580. [93] BOHLIN R,KAVRAKI L E.Path planning using lazy PRM[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2000:521-528. [94] HAUSER K.Lazy collision checking in asymptotically-optimal motion planning[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2015:2951-2957. [95] DOBSON A,BEKRIS K E.Sparse roadmap spanners for asymptotically near-optimal motion planning[J].The International Journal of Robotics Research,2014,33(1):18-47. [96] LAI T,RAMOS F,FRANCIS G.Balancing global exploration and local-connectivity exploitation with rapidly-exploring random disjointed-trees[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA),2019:5537-5543. [97] LAI T,MORERE P,RAMOS F,et al.Bayesian local sampling-based planning[J].IEEE Robotics and Automation Letters,2020,5(2):1954-1961. |
[1] | GOU Yuanmin, YAN Jianwei, ZHANG Fugui, SUN Chengyu, XU Yong. Research Progress on Vision System and Manipulator of Fruit Picking Robot [J]. Computer Engineering and Applications, 2023, 59(9): 13-26. |
[2] | WANG Shuai, LIU Xiangyang. Path Planning Method for Comprehensive Wild Terrain Based on Riemannian Manifold [J]. Computer Engineering and Applications, 2023, 59(7): 92-101. |
[3] | LIU Jingxiang, XU Wenzheng. Optimization of Charging Scheduling Under Multi-Node Partial Charging Model [J]. Computer Engineering and Applications, 2023, 59(6): 251-257. |
[4] | TAN Miaomiao, JIA Yankui. Kinematic Analysis and Simulation of Hip Rehabilitation Robot [J]. Computer Engineering and Applications, 2023, 59(6): 333-340. |
[5] | ZHAN Ruidian, HUANG Jingwei, ZHANG Xuexi, XIAO Chun, HOU Shuai, CAI Shuting. New Method of Path Planning and Tracking Control for Head Parking [J]. Computer Engineering and Applications, 2023, 59(4): 297-302. |
[6] | PENG Zexin, ZENG Bi, LIU Jianqi. Global Localization Method Based on Global Feature Point Matching [J]. Computer Engineering and Applications, 2023, 59(3): 264-275. |
[7] | WANG Xu, ZHU Qixin, ZHU Yonghong. Review of Path Planning Algorithms for Mobile Robots [J]. Computer Engineering and Applications, 2023, 59(20): 51-66. |
[8] | WU Bin, ZHANG Xin, VIALOVA Varvara. Research on Local Path Planning and Path Tracking of AGV for Real Working Conditions [J]. Computer Engineering and Applications, 2023, 59(20): 295-305. |
[9] | PANG Qingle, ZHENG Yang, MA Zhaoxing, HE Chenbin. Application of IGWO-IP&O Algorithm in PV Energy Storage MPPT Control System [J]. Computer Engineering and Applications, 2023, 59(20): 306-317. |
[10] | LI Siyu, MIN Huasong, WANG Qi. Kinematic Mapping Algorithm for Anthropomorphic Robotic Arm with Joints Equivalent [J]. Computer Engineering and Applications, 2023, 59(20): 318-325. |
[11] | JIN Wuxuan, MA Xianghua, ZHAO Jinliang. Research on Path Planning Algorithm of Mobile Robot Based on Improved Informed-RRT* [J]. Computer Engineering and Applications, 2023, 59(19): 75-81. |
[12] | SUN Yu, TANG Wei, TAN Xiao, GU Jinfeng, LANG Jiawei. Path Planning of Material Transmission Platform Based on IACSPF [J]. Computer Engineering and Applications, 2023, 59(19): 323-330. |
[13] | ZHANG Qijiao, DING Yi, QIN Tao. Multi-AGVs Path Planning of Automated Terminal Considering Conflict Avoidance [J]. Computer Engineering and Applications, 2023, 59(18): 301-308. |
[14] | WANG Weijian, WANG Yong, YANG Xiao, LYU Zongzhe, WU Zongyi. Research on Reinforcement Learning of Pedestrian Avoidance Approach for Mobile Robots [J]. Computer Engineering and Applications, 2023, 59(18): 316-322. |
[15] | LU Xianglong, WU Chundu, YANG Guanxue, ZHANG Bo, CHEN Zhen. Path Planning of Orchard Spray Robot Based on Improved A* and DWA Algorithm [J]. Computer Engineering and Applications, 2023, 59(18): 323-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||