[1] 吴玉霞,温欣.基于ARIMA模型的短期股票价格预测[J].统计与决策,2016(23):83-86.
WU Y X,WEN X.Short-term stock price forecasting based on ARIMA model[J].Statistics and Decision,2016(23):83-86.
[2] 刘子园.基于GARCH类模型的股票波动性研究——以上证A股和上证B股指数为例[J].中小企业管理与科技(下旬刊),2020(5):99-100.
LIU Z Y.Research on stock volatility based on GARCH model-taking the Shanghai A share index and the Shanghai B share index as examples[J].Management and Technology of SME(Late Edition),2020(5):99-100.
[3] 胡亚南,张陶陶,李蕾,等.稀疏VAR在股票收益率研究的应用[J].数理统计与管理,2017,36(4):731-739.
HU Y N,ZHANG T T,LI L,et al.Sparse VAR and its application to stock return[J].Journal of Applied Statistics and Management,2017,36(4):731-739.
[4] 田劲松.我国股票成交量的灰GM(1,1)模型群有效性验证[J].统计与决策,2012(14):159-161.
TIAN J S.The validity verification of grey GM(1,1) model group of stock trading volume in China[J].Statistics and Decision,2012(14):159-161.
[5] 胡聿文.基于优化LSTM模型的股票预测[J].计算机科学,2021,48(S1):151-157.
HU Y W.Stock forecast based on optimized LSTM model[J].Computer Science,2021,48(S1):151-157.
[6] 耿晶晶,刘玉敏,李洋,等.基于CNN-LSTM的股票指数预测模型[J].统计与决策,2021,37(5):134-138.
GENG J J,LIU Y M,LI Y,et al.Prediction model of stock index based on CNN-LSTM[J].Statistics and Decision,2021,37(5):134-138.
[7] 包振山,郭俊南,谢源,等.基于LSTM-GA的股票价格涨跌预测模型[J].计算机科学,2020,47(S1):467-473.
BAO Z S,GUO J N,XIE Y,et al.Model for stock price trend prediction based on LSTM and GA[J].Computer Science,2020,47(S1):467-473.
[8] 邓佳丽,赵凤群,王小侠.MTICA-AEO-SVR股票价格预测模型[J].计算机工程与应用,2022,58(8):257-263.
DENG J L,ZHAO F Q,WANG X X.MTICA-AEO-SVR model for stock price forecasting[J].Computer Engineering and Applications,2022,58(8):257-263.
[9] 王卫红,卓鹏宇.基于PCA-FOA-SVR的股票价格预测研究[J].浙江工业大学学报,2016,44(4):399-404.
WANG W H,ZHUO P Y.Research on stock price prediction based on PCA-FOA-SVR[J].Journal of Zhejiang University of Technology,2016,44(4):399-404.
[10] 杨建辉,李龙.基于SVR的期权价格预测模型[J].系统工程理论与实践,2011,31(5):848-854.
YANG J H,LI L.Option price forecasting model based on SVR[J].Systems Engineering-Theory and Practice,2011,31(5):848-854.
[11] 高天.基于最优小波包变换、ARIMA与SVR的股票价格预测研究[J].贵州财经大学学报,2015(6):57-69.
GAO T.Research on stock price prediction based on optimal wavelet packet transformation and ARIMA-SVR mixed model[J].Journal of Guizhou University of Finance and Economics,2015(6):57-69.
[12] 娄磊,刘璐,刘先俊,等.基于小波去噪的ARIMA-LSTM混合模型及对股票价格指数的预测[J].长春理工大学学报(自然科学版),2021,44(2):119-123.
LOU L,LIU L,LIU X J,et al.ARIMA-LSTM hybrid model based on wavelet denoising and prediction of stock price index[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2021,44(2):119-123.
[13] 程昌品,陈强,姜永生.基于ARIMA-SVM组合模型的股票价格预测[J].计算机仿真,2012,29(6):343-346.
CHENG C P,CHEN Q,JIANG Y S.Research on stock price prediction based on wavelet decomposition and ARIMA-SVM combined model[J].Computer Simulation,2012,29(6):343-346.
[14] 林赛燕.全球经济政策不确定性的演变趋势:基于EMD-ARIMA模型的预测分析[J].商业经济与管理,2022(3):74-86.
LIN S Y.Evolution trend of global economicpolicy uncertainty:a forecasting analysis with EMD-ARIMA model[J].Journal of Business Economics,2022(3):74-86.
[15] 贺毅岳,高妮,王峰虎,等.EMD分解下基于SVR的股票价格集成预测[J].西北大学学报(自然科学版),2019,49(3):329-336.
HE Y Y,GAO N,WANG F H,et al.Research on integrated forecasting of stock price based on EMD and support vector regression[J].Journal of Northwest University(Natural Science Edition),2019,49(3):329-336.
[16] 刘铭,单玉莹.基于EMD-LSTM模型的股指收盘价预测[J].重庆理工大学学报(自然科学),2021,35(12):269-276.
LIU M,SHAN Y Y.Prediction of closing price of stock index based on EMD-LSTM model[J].Journal of Chongqing University of Technology(Natural Science),2021,35(12):269-276.
[17] 肖小兵,刘宏立,马子骥.基于奇异谱分析的经验模态分解去噪方法[J].计算机工程与科学,2017,39(5):919-924.
XIAO X B,LIU H L,MA Z J.An empirical mode decomposition de-noising method based on singular spectrum analysis[J].Computer Engineering and Science,2017,39(5):919-924.
[18] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995.
[19] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997(8):1735-1780.
[20] ANDREW L R.Analysis of time series structure:SSA and related techniques[J].Technometrics,2002,44(3):290-290.
[21] VAPNIK N V.Support vector method for function estimation[C]//Advances in Neural Information Processing Systems,2001:281-287.
[22] CAO L Y.Practical method for determining the minimum embedding dimension of a scalar time series[J].Physica D:Nonlinear Phenomena,1997,110(1):43-50.