Helmet Wearing Detection Method Based on Improved CenterNet with Enhanced Associations
HUANG Pinchao, LIU Shijian, XU Ge, ZOU Zheng
1.College of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China
2.Fujian Provincial Key Laboratory of Information Processing and Intelligent Control, Minjiang University, Fuzhou 350108, China
3.College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China
HUANG Pinchao, LIU Shijian, XU Ge, ZOU Zheng. Helmet Wearing Detection Method Based on Improved CenterNet with Enhanced Associations[J]. Computer Engineering and Applications, 2023, 59(17): 250-256.
[1] ZHOU X,WANG D,KR?HENBüHL P.Objectsas points[J].arXiv:1904.07850,2019.
[2] ZHANG H,YAN X,LI H,et al.Real-time alarming,moni-toring,and locating for non-hard-hat use in construction[J].Journal of Computing in Civil Engineering,2019,145(3):4019006.
[3] MNEYMNEH B E,ABBAS M,KHOURY H.Vision-based framework for intelligent monitoring of hardhat wearing on construction sites[J].Journal of Computing in Civil Engineering,2019,33(2):1-20.
[4] FANG Q,LI H,LUO X,et al.Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J].Automation in Construction,2018,85(1):1-9.
[5] SHEN J,XIONG X,LI Y,et al.Detecting safety helmet wearing on construction sites with bounding-box regression and deep transfer learning[J].Computer-Aided Civil and Infrastructure Engineering,2020,36(2):180-196.
[6] LI J,WANG Y,WANG C,et al.DSFD:dual shot face detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),June 15-20,2019,Long Beach,CA,2019:5060-5069.
[7] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),June 27-30,2016,Las Vegas,NV,USA.New York:IEEE Press,2016.
[8] REDMON J,FARBADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR),July 21-26,2017,Honolulu,HI,USA.New York:IEEE Press,2017:6517-6525.
[9] REDMON J,FARHADI A.YOLOv3:an incremental improvement[J].arXiv:1804.02767,2018.
[10] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision(ECCV),2016:21-37.
[11] 秦伟伟,宋泰年,刘洁瑜,等.基于轻量化YOLOv3的遥感军事目标检测算法[J].计算机工程与应用,2021,57(21):263-269.
QIN W W,SONG T N,LIU J Y,et at.Remote sensing military target detection algorithm based on lightweight YOLOv3[J].Computer Engineering and Applications,2021,57(21):263-269.
[12] 王昱潭,朱超伟,赵琛,等.基于Faster R-CNN的灵武长枣图像检测方法[J].计算机工程与应用,2021,57(4):216-224.
WANG Y T,ZHU C W,ZHAO C,et at.Image detection method of Lingwu long jujube based on Faster R-CNN[J].Computer Engineering and Applications,2021,57(4):216-224.
[13] 潘慧,段先华,罗斌强.多尺度特征DCA融合的海上船舶检测算法研究[J].计算机工程与应用,2022,58(4):177-185.
PAN H,DUAN X H,LUO B Q.Research on marine ship detection based on multi-scale feature fusion and DCA[J].Computer Engineering and Applications,2022,58(4):177-185.
[14] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),June 27-30,2016,Las Vegas,NV,USA,2016:770-778.
[15] YU F,WANG D,SHELHAMER E,et al.Deep layer aggregation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:2403-2412.
[16] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer,2015:234-241.
[17] ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:a nested u-net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support.Cham:Springer,2018:3-11.
[18] HUANG G,LIU Z,LAURENS V,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
[19] WU J,CAI N,CHEN W,et al.Automatic detection of hardhats worn by construction personnel:a deep learning approach and benchmark dataset[J].Automation in Construction,2019,106:102894.
[20] SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4510-4520.
[21] HOU Q B,ZHOU D Q,FENG J S.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2021:13713-13722.