WU Chenwen, WANG Shasha, CAO Xuetong. Fuzzy Clustering Algorithm Combined with Cauchy Distribution and Ant Lion Algorithm[J]. Computer Engineering and Applications, 2023, 59(17): 91-98.
[1] WANG Q,WANG C,FENG Z Y,et al.Review of K-means clustering algorithm[J].Electronic Design Engineering,2012,20(7):21-24.
[2] DUNN J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J].Journal of Cybernetics,1973,3(3):32-57.
[3] BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[J].Plenum Press,1981,22(1171):203-239.
[4] ZHOU S,LI D,ZHANG Z,et al.A new membership scaling fuzzy c-means clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2020,29(9):2810-2818.
[5] KHANG T D,VUONG N D,TRAN M K,et al.Fuzzy c-means clustering algorithm with multiple fuzzification coefficients[J].Algorithms,2020,13(7):158.
[6] SURONO S,PUTRI R D A.Optimization of fuzzy c-means clustering algorithm with combination of Minkowski and Chebyshev distance using principal component analysis[J].International Journal of Fuzzy Systems,2021,23(1):139-144.
[7] XU K,PEDRYCZ W,LI Z,et al.Optimizing the prototypes with a novel data weighting algorithm for enhancing the classification performance of fuzzy clustering[J].Fuzzy Sets and Systems,2021,413:29-41.
[8] SABERI H,SHARBATI R,FARZANEGAN B.A gradient ascent algorithm based on possibilistic fuzzy C-Means for clustering noisy data[J].Expert Systems with Applications,2022,191:116153.
[9] MIRJALILI S.The ant lion optimizer[J].Advances in Engineering Software,2015,83:80-98.
[10] 景坤雷,赵小国,张新雨,等.具有Levy变异和精英自适应竞争机制的蚁狮优化算法[J].智能系统学报,2018,13(2):236-242.
JING K L,ZHAO X G,ZHANG X Y,et al.Ant lion optimizer with Levy variation and adaptive elite competition mechanism[J].CAAI Transactions on Intelligent Systems,2018,13(2):236-242.
[11] KILI? H,YüZGE? U.Improved ant lion optimization algorithm via tournament selection and its application to parallel machine scheduling[J].Computers & Industrial Engineering,2019,132:166-186.
[12] 刘景森,霍宇,李煜.优选策略的自适应蚁狮优化算法[J].模式识别与人工智能,2020,33(2):121-132.
LIU J S,HUO Y,LI Y.Preferred strategy based self-adaptive ant lion optimization algorithm[J].Pattern Recognition and Artificial Intelligence,2020,33(2):121-132.
[13] CHEN J,QI X,CHEN L,et al.Quantum-inspired ant lion optimized hybrid k-means for cluster analysis and intrusion detection[J].Knowledge-Based Systems,2020,203:106167.
[14] DI MARTINO F,SESSA S.A novel quantum inspired genetic algorithm to initialize cluster centers in fuzzy C-means[J].Expert Systems with Applications,2022,191:116340.
[15] 兰红,黄敏.融合KNN优化的密度峰值和FCM聚类算法[J].计算机工程与应用,2021,57(9):81-88.
LAN H,HUANG M.Fusion of KNN optimized density peaks and FCM clustering algorithm[J].Computer Engineering and Applications,2021,57(9):81-88.
[16] 陈承滨,余岭,潘楚东,等.基于蚁狮优化算法与迹稀疏正则化的结构损伤识别[J].振动与冲击,2019,38(16):71-76.
CHEN C B,YU L,PAN C D,et al.Structural damage detection based on an ant lion optimizer algorithm and trace sparse regularization[J].Journal of Vibration and Shock,2019,38(16):71-76.
[17] 周本金,陶以政,纪斌,等.最小化误差平方和k-means初始聚类中心优化方法[J].计算机工程与应用,2018,54(15):48-52.
ZHOU B J,TAO Y Z,JI B,et al.Optimizing k-means initial clustering centers by minimizing sum of squared error[J].Computer Engineering and Applications,2018,54(15):48-52.
[18] SHANG F,JIAO L C,SHI J,et al.Fast affinity propagation clustering:a multilevel approach[J].Pattern Recognition,2012,45(1):474-486.
[19] VINH N X,EPPS J,BAILEY J.Bibliometrics:information theoretic measures for clustering comparison[C]//The International Conference on Machine Learning,July 11-14,2010,Qingdao,China.New York:ACM,2010:2837-2854.