[1] CHAO H,WANG K,HE Y,et al.GaitSet:cross-view gait recognition through utilizing gait as a deep set[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(7):3467-3478.
[2] FAN C,PENG Y,CAO C,et al.GaitPart:temporal part-based model for gait recognition[C]//Proceedings of the 2000 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:14225-14233.
[3] HOU S,LIU X,CAO C,et al.Set residual network for silhouette-based gait recognition[J].IEEE Transactions on Biometrics Behavior and Identity Science,2021,3(3):384-393.
[4] IWAMA H,MURAMATSU D,MAKIHARA Y,et al.Gait verification system for criminal investigation[J].IPSJ Transactions on Computer Vision and Applications,2013,5:163-175.
[5] LYNNERUP N,LARSEN P K.Gait as evidence[J].IET Biometrics,2014,3(2):47-54.
[6] ZMA B,HFM A,IB B,et al.Investigating the use of motion-based features from optical flow for gait recognition-ScienceDirect[J].Neurocomputing,2018,283:140-149.
[7] ZHANG Y,HUANG Y,YU S,et al.Cross-view gait recognition by discriminative feature learning[J].IEEE Transactions on Image Processing,2019,29:1001-1015.
[8] LIAO R,CAO C,GARCIA E B,et al.Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations[C]//Proceedings of the 12th Chinese Conference on Biometric Recognition.Cham:Springer,2017:474-483.
[9] TEEPE T,KHAN A,GILG J,et al.GaitGraph:graph convolutional network for skeleton-based gait recognition[C]//Proceedings of the 2021 IEEE International Conference on Image Processing,2021:2314-2318.
[10] YU S,TAN D,TAN T.A framework for evaluating the effect of view angle,clothing and carrying condition on gait recognition[C]//Proceedings of the 18th International Conference on Pattern Recognition,2006,4:441-444.
[11] ZHU Z,GUO X,YANG T,et al.Gait recognition in the wild:a benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision,2021:14789-14799.
[12] WEI S E,RAMAKRISHNA V,KANADE T,et al.Convolutional pose machines[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition,2016:4724-4732.
[13] TAKEMURA N,MAKIHARA Y,MURAMATSU D,et al.Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition[J].IPSJ Transactions on Computer Vision & Applications,2018,10(1):4.
[14] HERMANS A,BEYER L,LEIBE B.In defense of the triplet loss for person re-identification[J].arXiv:1703.07737,2017.
[15] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
[16] JIE H,LI S,GANG S,et al.Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[17] LEE C Y,XIE S,GALLAGHER P,et al.Deeply-supervised nets[C]//Proceedings of the 18th International Conference on Artificial Intelligence and Statistics,2014:562-570.
[18] JU H,BHANU B.Individual recognition using gait energy image[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,28(2):316-322.