YANG Guoliang, YU Shuaiying, YANG Hao. Multi-Scale Fusion Mask Wearing Detection Method Based on Improved YOLOV5s[J]. Computer Engineering and Applications, 2023, 59(14): 184-191.
[1] HU Z L,SONG C,XU C J,et al.Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing,China[J].Science China(Life Sciences),2020,63(5):706-719.
[2] 吴帅,徐勇,赵东宁.基于深度卷积网络的目标检测综述[J].模式识别与人工智能,2018,31(4):335-346.
WU S,XU Y,ZHAO D N.Survey of object detection based on deep convolutional network[J].Pattern Recognition and Artificial Intelligence,2018,31(4):335-346.
[3] ZAIDI S S A,ANSARI M S,ASLAM A,et al.A survey of modern deep learning based object detection models[J].Digital Signal Processing,2022,126:103514.
[4] DESAI K,PARIKH S,PATEL K,et al.Survey of object detection algorithms and techniques[C]//Cybernetics,Cognition and Machine Learning Applications,2020:247-257.
[5] 李小波,李阳贵,郭宁,等.融合注意力机制的YOLOv5口罩检测算法[J].图学学报,2023,44(1):16-25.
LI X B,LI Y G,GUO N,et al.Mask detection algorithm based on YOLOv5 intergrating attention mechanism[J].Journal of Graphics,2023,44(1):16-25.
[6] 陈昭俊,储珺,曾伦杰.基于动态加权类别平衡损失的多类别口罩佩戴检测[J].图学学报,2022,43(4):590-598.
CHEN Z J,CHU J,ZENG L J.Multi category mask wearing detection based on dynamic weighted category balance loss[J].Journal of Graphics,2022,43(4):590-598.
[7] 王兵,乐红霞,李文璟,等.改进YOLO轻量化网络的口罩检测算法[J].计算机工程与应用,2021,57(8):62-69.
WANG B,LE H X,LI W J,et al.Mask detection algorithm based on improved YOLO lightweight network[J].Computer Engineering and Applications,2021,57(8):62-69.
[8] 程浩然,王薪陶,李俊燃,等.改进YOLOv4-tiny的疫情协同口罩佩戴检测方法[J].计算机工程与应用:1-16(2022-08-12)[2022-12-19].http://kns.cnki.net/kcms/detail/11.2127.TP.20220812.1448.010.html.
CHENG H R,WANG X T,LI J R,et al.Improved YOLOv4-tiny epidemic collaborative mask wearing detection method[J].Computer Engineering and Applications:1-16(2022-08-12)[2022-12-19].http://kns.cnki.net/kcms/detail/11.2127.TP.
20220812.1448.010.html.
[9] 朱杰,王建立,王斌.基于YOLOv4-tiny改进的轻量级口罩检测算法[J].液晶与显示,2021,36(11):1525-1534.
ZHU J,WANG J L,WANG B.Lightweight mask detection algorithm based on improved YOLOv4-tiny[J].Chinese Journal Liquid Crystal and Display,2021,36(11):1525-1534.
[10] 卢云聪.基于SSD算法的口罩佩戴检测模型[J].科技与创新,2022(18):101-103.
LU Y C.Mask wearing detection model based on SSD algorithm[J].Technology and Innovation,2022(18):101-103.
[11] 付莲莲,丁鑫圣,王映龙.基于帧间差分法的口罩佩戴检测算法研究[J].计算机仿真,2022,39(10):250-254.
FU L L,DING X S,WANG Y L.Research on mask wearing detection algorithm based on frame difference method[J].Computer Simulation,2022,39(10):250-254.
[12] WANG J,CHEN Y,GAO M,et al.Improved YOLOv5 network for real-time multi-scale traffic signdetection[J].arXiv:2112.08782,2021.
[13] SHI W,CABALLERO J,HUSZáR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1874-1883.
[14] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[15] JIN Z,YU D,SONG L,et al.You should look at all objects[C]//European Conference on Computer Vision.Cham:Springer,2022:332-349.
[16] LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019.
[17] ZHANG Y F,REN W,ZHANG Z,et al.Focal and efficient IOU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157.
[18] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988.
[19] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37.
[20] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems,2015.
[21] TIAN Z,SHEN C,CHEN H,et al.FCOS:fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9627-9636.