MA Zhenming, AN Junxiu, ZHOU Jun. Density Peaking Clustering Algorithm Combining Hybrid Density and Local Structure[J]. Computer Engineering and Applications, 2023, 59(12): 84-93.
[1] RODRIGUEZ A,LAIO A.Clustering by fast search and find of density peaks[J].Science,2014,344(6191):1492-1496.
[2] SHI Y,CHEN Z,QI Z,et al.A novel clustering-based image segmentation via densitypeaks algorithm with mid-level feature[J].Neural Computingand Applications,2017,28(1):29-39.
[3] YANG Y,ZHENG K,WU C,et al.Building an effective intrusion detectionsystemusing the modified density peak clustering algorithm and deep belief networks[J].Applied Sciences,2019,9(2):238.
[4] CHEN Y,HU X,FAN W,et al.Fast density peak clustering for large scaledata based on kNN[J].Knowledge-Based Systems,2020,187:104824.
[5] HOU J,ZHANG A,QI N.Density peak clustering based on relative density relationship[J].Pattern Recognition,2020,108:107554.
[6] ZHANG Z,ZHU Q,ZHU F,et al.Density decay graph-based density peak clustering[J].Knowledge-Based Systems,2021,224:107075.
[7] 曹俊茸,张德生,肖燕婷.结合密度比和系统演化的密度峰值聚类算法[J].计算机工程与应用,2022,58(21):75-82.
CAO J R,ZHANG D S,XIAO Y T.Density peak clustering algorithm combining density ratio and system evolution[J].Computer Engineering and Applications,2022,58(21):75-82.
[8] FLORES K G,GARZA S E.Density peaks clustering with gap-based automatic center detection[J].Knowledge-Based Systems,2020,206:106350.
[9] LIU R,WANG H,YU X M.Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J].Information Sciences,2018,450:200-226.
[10] LOTFI A,MORADI P,BEIGY H.Density peaks clustering based on density backbone and fuzzy neighborhood[J].Pattern Recognition,2020,107:107449.
[11] 杜洁,马燕,黄慧.基于局部引力和距离的聚类算法[J].计算机应用,2022(5):1472-1479.
DU J,MA Y,HUANG H.Clustering algorithm based on local gravity and distance[J].Journal of Computer Applications,2022(5):1472-1479.
[12] FU L,MEDICO E.FLAME,a novel fuzzy clustering method for the analysis of DNA microarray data[J].BMC Bioinformatics,2007,8(1):1-15.
[13] CHANG H,YEUNG D Y.Robustpath-based spectral clustering[J].Pattern Recognition,2008,41(1):191-203.
[14] JAIN A K,LAW M H C.Data clustering:a user’s dilemma[C]//International Conference on Pattern Recognition and Machine Intelligence.Berlin,Heidelberg:Springer,2005:1-10.
[15] VEENMAN C J,REINDERS M J T,BACKER E.A maximum varianceclusteralgorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1273-1280.
[16] FR?NTI P,VIRMAJOKI O.Iterative shrinking method for clustering problems[J].Pattern Recognition,2006,39(5):761-775.
[17] BAY S D,KIBLER D,PAZZANI M J,et al.The UCI KDD archive of large data sets for data mining research and experimentation[J].ACM SIGKDD Explorations Newsletter,2000,2(2):81-85.
[18] VINH N X,EPPS J,BAILEY J.Information theoretic measures for clusterings comparison:variants,properties,normalization and correction for chance[J].The Journal of Machine Learning Research,2010,11:2837-2854.
[19] NGUYEN T P Q,KUO R J.Partition-and-merge based fuzzy genetic clustering algorithm for categorical data[J].Applied Soft Computing,2019,75:254-264.
[20] POWERS D M W.Evaluation:from precision,recall and f-measure to ROC,informedness,markedness and correlation[J].arXiv:2010.16061,2020.