SONG Chunlei, ZHAO Xujun, GAO Yaxing, JIN Guangyin. Anomaly Series Detection Algorithm Based on Segmentation Feature Representation[J]. Computer Engineering and Applications, 2023, 59(9): 262-271.
[1] 滕飞,黄齐川,李天瑞,等.大规模时间序列分析框架的研究与实现[J].计算机学报,2020,43(7):1279-1292.
TENG F,HUANG Q C,LI T R,et al.An analysis framework for large-scale time series[J].Chinese Journal of Computers,2020,43(7):1279-1292.
[2] SVN S K,KALIDOS T,KULOTHUNGAN K,et al.Intelligent fuzzy rule-based approach with outlier detection for secured routing in WSN[J].Soft Computing,2020,24(21):16483-16497.
[3] CAO V L,NICOLAU M,MCDERMOTT J.Learning neural representations for network anomaly detection[J].IEEE Transactions on Cybernetics,2019,49(8):3074-3087.
[4] 任守纲,张景旭,顾兴健,等.时间序列特征提取方法研究综述[J].小型微型计算机系统,2021,42(2):271-278.
REN S G,ZHANG J X,GU X J,et al.Overview of feature extraction algorithms for time series[J].Journal of Chinese Computer Systems,2021,42(2):271-278.
[5] 马超红,翁小清.基于PAA的时间序列早期分类[J].计算机科学,2018,45(2):291-296.
MA C H,WENG X Q.Early classification of time series based on piecewise aggregate approximation[J].Computer Science,2018,45(2):291-296.
[6] ESCOBAR S.Anomaly detection principles and algorithms[J].Computing Reviews,2019,60(4):164-165.
[7] ZENG J,ZHANG L,SHI G,et al.An ARIMA based real-time monitoring and warning algorithm for the anomaly detection[C]//2017 IEEE 23rd International Conference on Parallel and Distributed Systems(ICPADS),2017:469-476.
[8] REN H,YE Z,LI Z.Anomaly detection based on a dynamic Markov model[J].Information Sciences,2017,411(4):52-65.
[9] GUO C,LI H,PAN D.An improved piecewise aggregate approximation based on statistical features for time series mining[C]//International Conference on Knowledge Science.Berlin,Heidelberg:Springer,2010:234-244.
[10] ZAN C T,YAMANA H.An improved symbolic aggregate approximation distance measure based on its statistical features[C]//Proceedings of the 18th International Conference on Information and Web-based Applications and Services,2016:72-80.
[11] YAHYAOUI H,AL-DAIHANI R.A novel trend based sax reduction technique for time series[J].Expert Systems with Applications,2019,130(9):113-123.
[12] LE X M T,TRAN T M,NGUYEN H T.An improvement of sax representation for time series by using complexity invariance[J].Intelligent Data Analysis,2020,24(3):625-641.
[13] THUY H,ANH D T,CHAU V.Efficient segmentation-based methods for anomaly detection in static and streaming time series under dynamic time warping[J].Journal of Intelligent Information Systems,2021,56(3):121-146.
[14] KIM T Y,CHO S B.Web traffic anomaly detection using C-LSTM neural networks[J].Expert Systems with Applications,2018,106(5):66-76.
[15] KIEU T,YANG B,JENSEN C S.Outlier detection for multidimensional time series using deep neural networks[C]//2018 19th IEEE International Conference on Mobile Data Management(MDM),2018:125-134.
[16] 胡珉,白雪,徐伟,等.多维时间序列异常检测算法综述[J].计算机应用,2020,40(6):1553-1564.
HU M,BAI X,XU W,et al.Review of anomaly detection algorithms for multidimensional time series[J].Journal of Computer Applications,2020,40(6):1553-1564.
[17] ZHOU Y,REN H,LI Z,et al.Anomaly detection via a combination model in time series data[J].Applied Intelligence,2021,51(7):4874-4887.
[18] REN H,LIAO X,LI Z,et al.Anomaly detection using piecewise aggregate approximation in the amplitude domain[J].Applied Intelligence,2018,48(5):1097-1110.
[19] 展鹏,陈琳,曹鲁慧,等.核转折点裁剪表示的时间序列异常检测算法[J].计算机工程与应用,2020,56(23):130-138.
ZHAN P,CHEN L,CAO L H,et al.Time series anomaly detection based on kernel turning points clipped representation[J].Computer engineering and Applications,2020,56(23):130-138.
[20] LI H.Time works well:dynamic time warping based on time weighting for time series data mining[J].Information Sciences,2021,547(35):592-608.
[21] AHMED C M,PALLETI V R,MATHUR A P.WADI: a water distribution testbed for research in the design of secure cyber physical systems[C]//Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks,2017:25-28.
[22] GOH J,ADEPU S,JUNEJO K N,et al.A dataset to support research in the design of secure water treatment systems[C]//The 11th International Conference on Critical Information Infrastructures Security.Cham:Springer,2016:88-99.
[23] CHENG Z,ZOU C,DONG J.Outlier detection using isolation forest and local outlier factor[C]//Proceedings of the Conference on Research in Adaptive and Convergent Systems,2019:161-168.
[24] ALGHUSHAIRY O,ALSINI R,SOULE T,et al.A review of local outlier factor algorithms for outlier detection in big data streams[J].Big Data and Cognitive Computing,2020,5(1):1-24.
[25] FENG C,TIAN P.Time series anomaly detection for cyber-physical systems via neural system identification and Bayesian filtering[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,2021:2858-2867.
[26] AUDIBERT J,MICHIARDI P,FRéDéRIC G,et al.USAD:unsupervised anomaly detection on multivariate time series[C]//The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,2020:3395-3404.