CUI Shaoguo, DU Xiao, YANG Zetian. Neural Recommendation Algorithm Using Combinations of Low and High-Order Features Based on Multi-Attention Mechanism[J]. Computer Engineering and Applications, 2023, 59(8): 192-199.
[1] 项亮.推荐系统实践[M].北京:人民邮电出版社,2012.
XIANG L.Recommender system practices[M].Beijing:Publishing House of Posts and Telecommunications,2012.
[2] 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647.
HUANG L W,JIANG B T,LV S Y,et al.Survey on deep learning based recommender systems[J].Chinese Journal of Computers,2018,41(7):1619-1647.
[3] 王瑞平,贾真,刘畅,等.基于DeepFM的深度兴趣因子分解机网络[J].计算机科学,2021,48(1):226-232.
WANG R P,JIA Z,LIU C,et al.Deep interest factorization machine network based on DeepFM[J].Computer Science,2021,48(1):226-232.
[4] 刘君良,李晓光.个性化推荐系统技术进展[J].计算机科学,2020,47(7):47-55.
LIU J L,LI X G.Techniques for recommendation system:a survey[J].Computer Science,2020,47(7):47-55.
[5] 王喆.深度学习推荐系统[M].北京:电子工业出版社,2020.
WANG Z.Deep learning recommender system[M].Beijing:Publishing House of Electronics Industry,2020.
[6] COVINGTON P,ADAMS J,SARGIN E.Deep neural networks for youtube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems,2016:191-198.
[7] CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems,2016:7-10.
[8] GUO H,TANG R,YE Y,et al.DeepFM:a factorization-machine based neural network for CTR prediction[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:1725-1731.
[9] HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval,2017:355-364.
[10] XIAO J,YE H,HE X,et al.Attentional factorization machines:learning the weight of feature interactions via attention networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence,2017:3119-3125.
[11] SONG W,SHI C,XIAO Z,et al.Autoint:automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management,2019:1161-1170.
[12] RENDLE S.Factorization machines[C]//2010 IEEE International Conference on Data Mining,2010:995-1000.
[13] LUONG M T,PHAM H,MANNING C D.Effective approaches to attention-based neural machine translation[J].arXiv:1508.04025,2015.
[14] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008.
[15] HOFFMANN F,HOSSEINI B,REN Z,et al.Consistency of semi-supervised learning algorithms on graphs:probit and one-hot methods[J].Journal of Machine Learning Research,2020,21:7549-7603.
[16] ZHAO W X,MU S,HOU Y,et al.Recbole:towards a unified,comprehensive and efficient framework for recommendation algorithms[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management,2021:4653-4664.
[17] QUEVEDO J R,MONTA?éS E,RANILLA J,et al.Ranked tag recommendation systems based on logistic regression[C]//International Conference on Hybrid Artificial Intelligence Systems.Berlin,Heidelberg:Springer,2010:237-244.
[18] WANG R,FU B,FU G,et al.Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17,2017:1-7.
[19] 吴韦俊,李烨.神经因子分解机推荐模型改进研究[J].软件导刊,2020,19(4):115-118.
WU W J,LI H.Research on improvement of recommendation model based on neural factorization machines[J].Software Guide,2020,19(4):115-118.
[20] 陈彬,张荣梅,张琦.DCFM:基于深度学习的混合推荐模型[J].计算机工程与应用,2021,57(3):150-155.
CHEN B,ZHANG R M,ZHANG Q.DCFM:hybrid recommendation model based on deep learning[J].Computer Engineering and Applications,2021,57(3):150-155.
[21] KINGMA D,BA J.Adam:a method for stochastic optimization[J].arXiv:1412.6980,2014.
[22] SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958.