Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (6): 212-220.DOI: 10.3778/j.issn.1002-8331.2111-0514

• Graphics and Image Processing • Previous Articles     Next Articles

Multi-Scale Attention Refinement Retinal Segmentation Algorithm

LIANG Liming, CHEN Xin, YU Jie, ZHOU Longsong   

  1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • Online:2023-03-15 Published:2023-03-15

多尺度注意力细化视网膜分割算法

梁礼明,陈鑫,余洁,周珑颂   

  1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000

Abstract: Aiming at the problems of unsegmented small blood vessels and over-segmented pathological areas due to the small size of retinal blood vessels and low contrast in existing algorithms, a multi-scale attention thinning retinal segmentation algorithm based on U-shaped network is proposed. First of all, the improved dense convolution module is used in the encoding and decoding stages to fully extract the feature information of the blood vessel, and improve the utilization of features. Secondly, the results of the four feature extractions of the coding layers of different scales are spliced, and then transferred to the decoding layer through skip connections. At the same time, a dual attention mechanism is introduced in the skipping connection and spatial refinement structure to spatially enhance the structure of the tiny blood vessels. Finally, the spatial refinement module is introduced in the decoding to further extract the spatial information of the tiny blood vessels and refine the distribution and shape of the blood vessels. The algorithm is verified on the public data sets DRIVE and STARE. The evaluation indicators ACC are 0.964 9 and 0.966 3, the sensitivity is 0.842 2 and 0.805 0, the specificity is 0.982 2 and 0.988 0, and the AUC is 0.986 7 and 0.989 5.

Key words: retinal vessel segmentation, spatial refinement, dense convolution, dual attention

摘要: 针对现有算法存在因视网膜血管尺寸微小和对比度低等造成细小血管分割缺失以及因病理区域造成血管过分割等问题,提出一种基于U型网络多尺度注意力细化视网膜分割算法。在编码和解码阶段使用改进的密集卷积模块充分提取血管的特征信息,提升特征的利用率。将不同尺度的编码层特征提取的结果拼接后,通过跳跃连接经双向注意力机制将特征增强后传递到解码层。在解码处引入空间细化模块进一步提取微小血管的空间信息,减少背景伪影,细化血管形态。该算法在公开数据集DRIVE和STARE上进行验证,其在评估指标准确率分别为0.964 9和0.966 3,灵敏度分别为0.842 2和0.805 0,特异性分别为0.982 2和0.988 0,AUC分别为0.986 7和0.989 5。

关键词: 视网膜血管分割, 空间细化, 密集卷积, 双向注意力