
Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (3): 13-22.DOI: 10.3778/j.issn.1002-8331.2207-0179
• Research Hotspots and Reviews • Previous Articles Next Articles
YANG Hanyu, ZHAO Xiaoyong, WANG Lei
Online:2023-02-01
Published:2023-02-01
杨寒雨,赵晓永,王磊
YANG Hanyu, ZHAO Xiaoyong, WANG Lei. Review of Data Normalization Methods[J]. Computer Engineering and Applications, 2023, 59(3): 13-22.
杨寒雨, 赵晓永, 王磊. 数据归一化方法综述[J]. 计算机工程与应用, 2023, 59(3): 13-22.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2207-0179
| [1] HUANG C,HUANG Y.Information fusion early warning of rail transit signal operation and maintenance based on big data of internet of things[J].Sustainable Computing:Informatics and Systems,2022,35. [2] 周宇,曹英楠,王永超.面向大数据的数据处理与分析算法综述[J].南京航空航天大学学报,2021,53(5):664-676. ZHOU Y,CAO Y N,WANG Y C.Overview of data pro-cessing and analysis algorithms for big data[J].Journal of Nanjing University of Aeronautics & Astronautics,2021,53(5):664-676. [3] LUO S,DING C,CHENG H,et al.Estimated ultimate recovery prediction of fractured horizontal wells in tight oil reservoirs based on deep neural networks[J].Advances in Geo-Energy Research,2022,6(2):111-122. [4] XIAO Z W,GANG W J,YUAN J Q,et al.Impacts of data preprocessing and selection on energy consumption pre-diction model of HVAC systems based on deep learning[J].Energy & Buildings,2022,258. [5] JO J M.Effectiveness of normalization pre-processing of big data to the machine learning performance[J].The Journal of the Korea Institute of Electronic Communication Sciences,2019,14(3):547-552. [6] GARCíA S,LUENGO J,HERRERA F.Data preprocessing in data mining[M].Cham,Switzerland:Springer International Publishing,2015. [7] RENUKADEVI P,RAJIV KANNAN A.Covid-19 forecasting with deep learning-based half-binomial distribution cat swarm optimization[J].Computer Systems Science and Engineering,2023,44(1):629-645. [8] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,2015:448-456. [9] LANJEWAR M G,PARATE R K,PARAB J S.Machine learning approach with data normalization technique for early stage detection of hypothyroidism[M]//Artificial intel-ligence applications for health care.[S.l.]:CRC Press,2022:91-108. [10] PAN J,ZHUANG Y,FONG S.The impact of data normalization on stock market prediction:using SVM and technical indicators[C]//International Conference on Soft Computing in Data Science.Singapore:Springer,2016:72-88. [11] JAN A K,DOUGLAS M.A comprehensive evaluation of metabolomics data preprocessing methods for deep learning[J].Metabolites,2022,12(3). [12] TANG C,XU Y,ZHU Q.Data normalization improves semantic annotation—a case study of rare disease name annotation[C]//2021 IEEE International Conference on Bioinformatics and Biomedicine(BIBM),2021:2609-2611. [13] RAHM E,DO H H.Data cleaning:problems and current approaches[J].IEEE Data Engineering Bulletin,2000,23(4):3-13. [14] BA L J,KIROS J R,HINTON G E.Layer normalization[J].arXiv:1607.06450,2016. [15] ULYANOV D,VEDALDI A,LEMPITSKY V S.Instance normalization:the missing ingredient for fast stylization[J].arXiv:1607.08022,2016. [16] 王岩.深度神经网络的归一化技术研究[D].南京:南京邮电大学,2019:1179-1185. WANG Y.Analysis of normalization for deep neural networks[D].Nanjing:Nanjing University of Posts and Telecommunications,2019:1179-1185. [17] MEDEIROS D S V,CUNHA NETO H N,LOPEZ M A,et al.A survey on data analysis on large-scale wireless networks:online stream processing,trends,and challenges[J].Journal of Internet Services and Applications,2020,11(1). [18] 詹敏,廖志高,徐玖平.线性无量纲化方法比较研究[J].统计与信息论坛,2016,31(12):17-22. ZHAN M,LIAO Z G,XU J P,et al.Character analysis of linear dimensionless methods[J].Journal of Statistics and Information,2016,31(12):17-22. [19] 郭亚军,易平涛.线性无量纲化方法的性质分析[J].统计研究,2008,25(2):93-100. GUO Y J,YI P T.Character analysis of linear dimensionless methods[J].Statistical Research,2008,25(2): 93-100. [20] 郑宏宇,邓银燕,贺瑞缠.综合评价中数据变换方法的选择[J].纯粹数学与应用数学,2010,26(2):319-324. ZHENG H Y,DENG Y Y,HE R C.About the choice of target non-dimensional method in multi target synthetic evaluations[J].Pure and Applied Mathematics,2010,26(2):319-324. [21] PANDA S K,NAG S,JANA P K.A smoothing based task scheduling algorithm for heterogeneous multi-cloud environment[C]//2014 International Conference on Parallel,Distributed and Grid Computing,2014:62-67. [22] PANDA S K,JANA P K.Efficient task scheduling algorithms for heterogeneous multi-cloud environment[J].The Journal of Supercomputing,2015,71(4):1505-1533. [23] PANDA S K,JANA P K.A multi-objective task scheduling algorithm for heterogeneous multi-cloud environment[C]//2015 International Conference on Electronic Design,Computer Networks & Automated Verification(EDCAV),2015:82-87. [24] PATRO S G K,SAHU K K.Normalization:a preprocessing stage[J].arXiv:1503.06462,2015. [25] LITTLE W A.The existence of persistent states in the brain[J].Mathematical Biosciences,1974,19(1/2):101-120. [26] LITTLE W A,SHAW G L.Analytic study of the memory storage capacity of a neural network[J].Mathematical Biosciences,1978,39(3/4):281-290. [27] HUANG K H,FU Y F,LEE Y T,et al.A-HA:a hybrid approach for hotel recommendation[C]//Proceedings of the Workshop on ACM Recommender Systems Challenge,2019:1-5. [28] 郭亚军,宫诚举,李伟伟,等.基于反三角函数的非线性预处理方法[J].系统工程,2017,35(7):53-57. GUO Y J,GONG C J,LI W W,et al.A nonlinear preprocessing method based on inverse trigonometric function[J].Systems Engineering,2017,35(7):53-57. [29] KALMAN B L,KWASNY S C.Why tanh:choosing a sigmoidal function[C]//Proceedings International Joint Conference on Neural Networks,1992:578-581. [30] ZHANG S S,LIU J W,ZUO X,et al.Online deep learning based on auto-encoder[J].Applied Intelligence,2021. [31] WU Y,HE K.Group normalization[C]//Proceedings of the European Conference on Computer Vision,2018:3-19. [32] LUO P,REN J,PENG Z,et al.Differentiable learning-to-normalize via switchable normalization[J].arXiv:1806. 10779,2018. [33] SINGH S,KRISHNAN S.Filter response normalization layer:eliminating batch dependence in the training of deep neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:11237-11246. [34] PYLE D.Data preparation for data mining[M].[S.l.]:Morgan Kaufmann,1999. [35] ZLIOBAITE I,GABRYS B.Adaptive preprocessing for streaming data[J].IEEE Transactions on Knowledge and Data Engineering,2012,26(2):309-321. [36] HU H,KANTARDZIC M.Smart preprocessing improves data stream mining[C]//2016 49th Hawaii International Conference on System Sciences(HICSS),2016:1749-1757. [37] SAHEED Y K,ABIODUN A I,MISRA S,et al.A machine learning-based intrusion detection for detecting internet of things network attacks[J].Alexandria Engineering Journal,2022,61(12):9395-9409. [38] 陈玉平,刘波,林伟伟,等.云边协同综述[J].计算机科学,2021,48(3):259-268. CHEN Y P,LIU B,LIN W W,et al.Survey of cloud-edge collaboration[J].Computer Science,2021,48(3):259-268. [39] LOPEZ M A,MATTOS D M F,DUARTE O C M B,et al.A fast unsupervised preprocessing method for network monitoring[J].Annals of Telecommunications,2019,74(3):139-155. [40] GUPTA V,HEWETT R.Adaptive normalization in streaming data[C]//Proceedings of the 2019 3rd International Conference on Big Data Research,2019:12-17. [41] GUPTA V.Big data stream analytics with AI techniques[D].Lubbock:Texas Tech University,2019. [42] 张友浩,赵鸣,徐梦瑶,等.时序数据挖掘的预处理研究综述[J].智能计算机与应用,2021,11(1):74-78. ZHANG Y H,ZHAO M,XU M Y,et al.Summary of research on preprocessing on time series data mining[J].Intelligent Computer and Applications,2021,11(1):74-78. [43] GUPTA M,WADHVANI R,RASOOL A.Real-time change-point detection:a deep neural network-based adaptive approach for detecting changesin multivariate time series data[J].Expert Systems with Applications,2022,209. [44] PASSALIS N,TEFAS A,KANNIAINEN J,et al.Deep adaptive input normalization for time series forecasting[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(9):1-6. [45] OGASAWARA E,MARTINEZ L C,DE OLIVEIRA D,et al.Adaptive normalization:a novel data normalization approach for non-stationary time series[C]//The 2010 International Joint Conference on Neural Networks,2010:1-8. [46] GIAO B C,ANH D T.Similarity search for numerouspatterns over multiple time series streams under dyn-amic time warping which supports data normalization[J].Vietnam Journal of Computer Science,2016,3(3):181-196. [47] SAKURAI Y,FALOUTSOS C,YAMAMURO M.Stream monitoring under the time warping distance[C]//2007 IEEE 23rd International Conference on Data Engineering,2007:1046-1055. [48] GONG X,SI Y W,FONG S,et al.NSPRING:normalization supported SPRING for subsequence matching ontime series streams[C]//2014 IEEE 15th International Symposium on Computational Intelligence and Informatics,2014:373-378. |
| [1] | GAN Yating, AN Jianye, XU Xue. Survey of Short Text Classification Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(4): 43-53. |
| [2] | YANG Kunrong, XIONG Yu, ZHANG Jian, CHU Wen. Research on MOOC Dropout Prediction Strategy for Long- and Short-Term Mixed Data [J]. Computer Engineering and Applications, 2023, 59(4): 130-138. |
| [3] | LI Ling, GUO Guangsong. Hybrid Many-Objective Evolutionary Optimization Combined with Indexs Decomposition [J]. Computer Engineering and Applications, 2023, 59(4): 165-174. |
| [4] | HU Xinjue, FU Zhangjie. Hiding Two Images with High Visual Quality [J]. Computer Engineering and Applications, 2023, 59(4): 235-242. |
| [5] | ZHANG Han, ZHENG Weihao, DOU Zhicheng, WEN Jirong. Integrating Multi-Layer Structure Information of Law for Legal Judgement Prediction [J]. Computer Engineering and Applications, 2023, 59(3): 253-263. |
| [6] | CHEN Xiaoting, LI Shi. Survey on Emotion Recognition in Conversation [J]. Computer Engineering and Applications, 2023, 59(3): 33-48. |
| [7] | DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan. Application of Deep Learning in Classification and Diagnosis of Alzheimer's Disease [J]. Computer Engineering and Applications, 2023, 59(3): 49-65. |
| [8] | LIN Honghui, LIU Jianhua, ZHENG Zhixiong, HU Renyuan, LUO Yixuan. Multi-Task Network for Joint Dialog Act Recognition and Sentiment Classification [J]. Computer Engineering and Applications, 2023, 59(3): 104-111. |
| [9] | LIN Yuan, WANG Kaiqiao, YANG Liang, LIN Hongfei, REN Lu, DING Kun. Sentiment Analysis of Peer Review Texts Based on Pu-Learning [J]. Computer Engineering and Applications, 2023, 59(3): 143-149. |
| [10] | DING Shangshang, ZHENG Tianli, YAO Kang, ZHANG Hetong, PEI Ronghao, FU Weiwei. Deep-Learning-Based Research on Refractive Detection [J]. Computer Engineering and Applications, 2023, 59(3): 193-201. |
| [11] | ZHANG Dongdong, GUO Jie, CHEN Yang. 3D Object Detection Algorithm Based on Raw Point Clouds [J]. Computer Engineering and Applications, 2023, 59(3): 209-217. |
| [12] | LIN Lingde, LIU Na, WANG Zheng'an. Review of Research on Adapter and Prompt Tuning [J]. Computer Engineering and Applications, 2023, 59(2): 12-21. |
| [13] | PEI Wenbin, WANG Hailong, LIU Lin, PEI Dongmei. Review of Musical Instrument Recognition in Music Information Retrieval [J]. Computer Engineering and Applications, 2023, 59(2): 34-47. |
| [14] | PAN Mengzhu, LI Qianmu, QIU Tian. Survey of Research on Deep Multimodal Representation Learning [J]. Computer Engineering and Applications, 2023, 59(2): 48-64. |
| [15] | WEI Shihong, LIU Hongmei, TANG Hong, ZHU Longjiao. Multilevel Metric Networks for Few-Shot Learning [J]. Computer Engineering and Applications, 2023, 59(2): 94-101. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||