Computer Engineering and Applications ›› 2023, Vol. 59 ›› Issue (2): 34-47.DOI: 10.3778/j.issn.1002-8331.2205-0492
• Research Hotspots and Reviews • Previous Articles Next Articles
PEI Wenbin, WANG Hailong, LIU Lin, PEI Dongmei
Online:
2023-01-15
Published:
2023-01-15
裴文斌,王海龙,柳林,裴冬梅
PEI Wenbin, WANG Hailong, LIU Lin, PEI Dongmei. Review of Musical Instrument Recognition in Music Information Retrieval[J]. Computer Engineering and Applications, 2023, 59(2): 34-47.
裴文斌, 王海龙, 柳林, 裴冬梅. 音乐信息检索下的乐器识别综述[J]. 计算机工程与应用, 2023, 59(2): 34-47.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2205-0492
[1] 李伟,李子晋,邵曦.音频音乐与计算机的交融——音频音乐技术[M].上海:复旦大学出版社,2019:1-246. LI W,LI Z J,SHAO X.The blending of audio music and computer--audio music technology[M].Shanghai:Fudan University Press,2019:1-246. [2] AUCOUTURIER J J,PACHET F.Scaling up music playlist generation[C]//Proceedings of IEEE International Conference on Multimedia and Expo,2002. [3] XIONG Z,RADHAKRISHNAN R,DIVAKARAN A,et al.Comparing MFCC and MPEG-7 audio features for feature extraction,maximum likelihood HMM and entropic prior HMM for sports audio classification[C]//IEEE International Conference on Acoustics,2003:397-400. [4] LING M,MILNER B P,DAN S.Acoustic environment classification[J].ACM Transactions on Speech and Language Processing,2006,3(2):1-22. [5] 李洁琼.钢琴智能化教学“智”在何方[D].北京:中国音乐学院,2019. LI J Q.Where is “intellect” in the intelligent teaching of piano[D].Beijing:China Conservatory of Music,2019. [6] KURNIA Y,SILAEN T P.Android-based musical instrument recognition application for vocational high school level[J].Bit-Tech,2021,4(2):47-55. [7] DIVAKARAN A,REGUNATHAN R,XIONG Z,et al.Procedure for audio-assisted browsing of news video using generalized sound recognition[C]//Storage and Retrieval for Media Databases 2003,Santa Clara,CA,USA,2003. [8] ERONEN A.Comparison of features for musical instrument recognition[C]//IEEE Workshop on Applications of Signal Processing to Audio & Acoustics,2002. [9] DENG J D,SIMMERMACHER C,CRANEFIELD S.A study on feature analysis for musical instrument classification[J].IEEE Transactions on Cybernetics,2008,38(2):429-438. [10] WEESE J L.A convolutive model for polyphonic instrument identification and pitch detection using combined classification[D].Kansas State University,2013. [11] 沈骏,胡荷芬.中国民族乐器的特征值提取和分类[J].计算机与数字工程,2012,40(9):119-121. SHEN J,HU H F.Audio feature extraction and classification of the Chinese national instrument[J].Computer and Digital Engineering,2012,40(9):119-121. [12] YANG H J,LAY Y L,LIN C S.Automatic timbre quality evaluation in Chinese traditional flute industry[J].Expert Systems with Applications,2007,32(4):1004-1010. [13] 旷玮,姬培锋,杨军.笙的簧片物理参数与音色相关性的初步研究[J].应用声学,2016,35(6):494-504. KUANG W,JI P F,YANG J.A study of the relationship between the physical parameters of Sheng reed and the timbre[J].Journal of Applied Acoustics,2016,35(6):494-504. [14] TSAI C G.Relating the harmonic-rich sound of the Chinese flute (dizi) to the cubic nonlinearity of its membrane[J].Journal of the Acoustical Society of America,2012,131(4):3296. [15] DAVIS S,MERMELSTEIN P.Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J].IEEE Transactions on Acoustics Speech & Signal Processing,1980. [16] ERONEN A.Musical instrument recognition using ICA-based transform of features and discriminatively trained HMMs[C]//International Symposium on Signal Processing & Its Applications,2003. [17] MORVIDONE M,STURM R L,DAUDET R.Incorporating scale information with cepstral features:experiments on musical instrument recognition[J].Pattern Recognition Letters,2010,31(12):1489-1497. [18] STURM B L,MORVIDONE M,DAUDET L.Musical instrument identification using multiscale mel-frequency cepstral coefficients[C]//2010 18th European Signal Processing Conference,2010:477-481. [19] MAHANTA S K,KHILJI A F U R,PAKRAY P.Deep neural network for musical instrument recognition using MFCCs[J].arXiv:2105.00933,2021. [20] 韩纪庆,张磊,郑铁然.语音信号处理[M].北京:清华大学出版社,2019:97-121. HAN J Q,ZHANG L,ZHENG T R.Speech signal processing[M].Beijing:Tsinghua University Press,2019:97-121. [21] SCHWARZ D,RODET X.Spectral envelope estimation and representation for sound analysis-synthesis[C]//Proceedings of ICMC,1999. [22] AUCOUTURIER J J,SANDLER M.Segmentation of musical signals using hidden MARkov models[C]//Proc Convention of the Audio Engineering Society,2012. [23] ERONEN A.Comparison of features for musical instrument recognition[C]//IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics,2001:19-22. [24] KRISHNA A G,SREENIVAS T V.Music instrument recognition:from isolated notes to solo phrases[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing,2004. [25] DUAN Z,PARDO B A,DAUDET L.A novel cepstral representation for timbre modeling of sound sources in polyphonic mixtures[C]//International Conference on Acoustics,Speech,and Signal Processing,2014. [26] YU L F,SU L,YANG Y H.Sparse cepstral codes and power scale for instrument identification[C]//2014 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2014. [27] HAN Y,LEE S,NAM J,et al.Sparse feature learning for instrument identification:effects of sampling and pooling methods[J].The Journal of the Acoustical Society of America,2016,139(5):2290-2298. [28] 岳琪,徐忠亮,郭继峰.面向混合乐器音乐分析的稀疏特征提取方法[J].计算机工程与应用,2021,57(14):181-186. YUE Q,XU Z L,GUO J F.Sparse feature extraction method for mixed instruments music analysis[J].Computer Engineering and Applications,2021,57(14):181-186. [29] HU Y,LIU G.Instrument identification and pitch estimation in multi-timbre polyphonic musical signals based on probabilistic mixture model decomposition[J].Journal of Intelligent Information Systems,2013,40(1):141-158. [30] 郅逍遥,李临生,郭喆,等.基于相空间重构和柔性神经树的乐器分类[J].计算机应用与软件,2015(2):159-162. ZHI X Y,LI L S,GUO Z,et al.Musical instruments classification based on phase space reconstruction and flexible neural trees[J].Computer Applications and Software,2015(2):159-162. [31] KASHINO K,MURASE H.A sound source identification system for ensemble music based on template adaptation and music stream extraction[J].Speech Communication,1999,27(3/4):337-349. [32] KINOSHITA T,SAKAI S,TANAKA H.Musical sound source identification based on frequency component adaptation[J].Proc IJCAI Workshop on Computational Auditory Scene Analysis,1999. [33] EGGINK J,BROWN G J.A missing feature approach to instrument identification in polyphonic music[C]//IEEE International Conference on Acoustics,2003. [34] KITAHARA T,GOTO M,KOMATANI K,et al.Musical instrument recognizer "Instrogram" and its application to music retrieval based on Instrumentation Similarity[C]//Eigth IEEE International Symposium on Multimedia(ISM 2006),San Diego,CA,USA,2006. [35] ESSID S,RICHARD G,DAVID B.Musical instrument recognition by pairwise classification strategies[J].IEEE Transactions on Audio,Speech,and Language Processing,2006,14(4):1401-1412. [36] 孙聪珊,杨婧,马琳,等.基于离散谐波变换的西洋乐器音色特征提取方法[J].复旦学报(自然科学版),2020,59(5):531-539. SUN C S,YANG J,MA L,et al.Timbre feature extraction of western musical instrument based on discrete harmonic transform[J].Journal of Fudan University(Natural Science),2020,59(5):531-539. [37] 黄雪梅,闫坤,李亮,等.基于递归图的乐器识别算法[J].传感器与微系统,2020,39(11):144-147. HUANG X M,YAN K,LI L,et al.Instrument recognition algorithm based on recurrence plot[J].Transducer and Microsystem Technologies,2020,39(11):144-147. [38] CHAUDHARY S,KAKARWAL S,DESHMUKH R.Musical instrument recognition using audio features with integrated entropy method[J].Journal of Integrated Science and Technology,2021,9(2):92-97. [39] 王飞,于凤芹.结合多尺度时频调制与多线性主成分分析的乐器识别[J].计算机应用,2018,38(3):891-894. WANG F,YU F Q.Musical instrument recognition based on multiscale time-frequency modulation and multilinear principal component analysis[J].Journal of Computer Applications,2018,38(3):891-894. [40] MARQUES J.An automatic annotation system for audio data containing music[D].Cambridge,MA:Massachussetts Institute of Technology,1999. [41] AGOSTINI G,LONGARI M,POLLASTRI E.Musical instrument timbres classification with spectral features[C]//IEEE Fourth Workshop on Multimedia Signal Processing,2003. [42] GULHANE S R,SHIRBAHADURKAR S D,BADHE S.KNN-a machine learning approach to recognize a musical instrument[J].International Journal of Advance Research,Ideas and Innovations in Technology,2017(6):707-710. [43] CASEY M A.General sound classification and similarity in MPEG-7[J].Organized Sound,2001,6(2):153-164. [44] HAN Y,KIM J,LEE K,et al.Deep convolutional neural networks for predominant instrument recognition in polyphonic music[J].IEEE/ACM Transactions on Audio,Speech and Language Processing,2017,25(1):208-221. [45] 俞冬妍.基于深度学习的主乐器识别方法研究[D].成都:电子科技大学,2020. YU D Y.Research on predominant instrument recognition based on deep learning[D].Chengdu:University of Electronic Science and Technology of China,2020. [46] PARK T,LEE T.Musical instrument sound classification with deep convolutional neural network using feature fusion approach[J].arXiv:1512.07370,2015. [47] 王飞.基于音色分析与深度学习的乐器识别方法研究[D].无锡:江南大学,2018. WANG F.Musical instrument identification based on deep learningandtimbre analysis[D].Wuxi:Jiangnan University,2018. [48] 赵庆磊,邵峰晶,孙仁诚,等.乐器识别中频谱特征与聚合策略性能评估[J].青岛大学学报(自然科学版),2021,34(2):38-44. ZHAO Q L,SHAO F J,SUN R C,et al.Performance evaluation of spectrum features and aggregation strategies for musical instrument recognition[J].Journal of Qingdao University(Natural Science Edition),2021,34(2):38-44. [49] TAENZER M,ABEER J,MIMILAKIS S I,et al.Investigating CNN-based instrument family recognition for western classical music recordings[C]//International Society for Music Information Retrieval,2019. [50] GHARIB S,DROSSOS K,?AKIR E,et al.Unsupervised adversarial domain adaptation for acoustic scene classification[J].arXiv:1808.05777,2018. [51] DIELEMAN S,SCHRAUWEN B.End-to-end learning for music audio[C]//IEEE International Conference on Acoustics,Speech and Signal Processing,2014. [52] LI P,QIAN J,WANG T.Automatic instrument recognition in polyphonic music using convolutional neural networks[J].arXiv:1511.05520,2015. [53] HOSHEN Y,WEISS R J,WILSON K W.Speech acoustic modeling from raw multichannel waveforms[C]//2015 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP),2015:4624-4628. [54] PALAZ D,COLLOBERT R,DOSS M M.Estimating phoneme class conditional probabilities from raw speech signal using convolutional neural networks[J].arXiv:1304. 1018,2013. [55] 李荣光.基于卷积神经网络的音乐信号多乐器识别方法研究[D].广州:华南理工大学,2019. LI R G.Research on multi-instrument recognition method of music signal based on convolutional neural network[D].Guangzhou:South China University of Technology,2019. [56] KRATIMENOS A,AVRAMIDIS K,GAROUFIS C,et al.Augmentation methods on monophonic audio for instrument classification in polyphonic music[C]//2020 28th European Signal Processing Conference(EUSIPCO),2021:156-160. [57] GURURANI S,SHARMA M,LERCH A.An attention mechanism for musical instrument recognition[J].arXiv:1907.04294,2019. [58] WATCHARASUPAT K,GURURANI S,LERCH A.Visual attention for musical instrument recognition[J].arXiv:2006.09640,2020. [59] TAENZER M,MIMILAKIS S I,ABE?ER J.Deep learning-based music instrument recognition.exploring learned feature representations[C]//15th International Symposium on CMMR,2021. [60] REGHUNATH L C,RAJAN R.Transformer-based ensemble method for multiple predominant instruments recognition in polyphonic music[J].EURASIP Journal on Audio,Speech,and Music Processing,2022,2022(1):1-14. [61] SHI X,COOPER E,YAMAGISHI J.Use of speaker recognition approaches for learning and evaluating embedding representations of musical instrument sounds[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2022,30:367-377. [62] GURURANI S,SUMMERS C,LERCH A.Instrument activity detection in polyphonic music using deep neural networks[C]//Proceedings of the International Society for Music Information Retrieval Conference(ISMIR 2019),2019. [63] 李子晋,蒋超亚,陈晓鸥,等.基于卷积循环神经网络的中国民族复音音乐的乐器活动检测[J].复旦学报(自然科学版),2020,59(5):511-516. LI Z J,JIANG C Y,CHEN X O,et al.Instrument activity detection of China national polyphonic music based on convolutional recurrent neural network[J].Journal of Fudan University(Natural Science Edition),2020,59(5):511-516. [64] ABE?ER J,CHAUHAN J,PILLAI P P,et al.Predominant Jazz instrument recognition:empirical studies on neural network architectures[C]//2021 29th European Signal Processing Conference(EUSIPCO),2021:361-365. [65] LEKSHMI C R,RAJAN R.Predominant instrument recognition in polyphonic music using convolutional recurrent neural networks[C]//15th International Symposium on CMMR,2021. [66] GOTO M,HASHIGUCHI H,NISHIMURA T,et al.RWC music database:popular,classical,and Jazz music database[C]//International Conference on Music Information Retrieval,2002:35-42. [67] GOTO M.RWC music database[EB/OL].[2020-03-10].http://staff.aist.go.jp/m.goto/RWC-MDB/. [68] BITTNE R,SALAMON J,TIERNEY M,et al.MedleyDB:a multitrack dataset for annotation-intensive MIR research[C]//15th International Society for Music Information Retrieval Conference,2014. [69] BITTNER R M,WILKINS J,YIP H,et al.MedleyDB 2.0:new data and a system for sustainable data collection[C]//ISMIR Late Breaking and Demo Papers,2016. [70] FUHRMANN F.IRMAS database[EB/OL].[2020-03-10].https://www.upf.edu/web/mtg/irmas. [71] THICKSTUN J,HARCHAOUI Z,KAKADE S.Learning features of music from scratch[J].arXiv:1611.09827,2016. [72] THICKSTUN J.Musicnet database[EB/OL].[2020-03-10].https://homes.cs.washington.edu/~thickstn/musicnet.html. [73] HUMPHREY E.OpenMIC database[EB/OL].[2020-03-10].https://github.com/cosmir/open-mic-data. [74] HUMPHREY E,DURAND S,MCFEE B.OpenMIC—2018:an open data-set for multiple instrument recognition[C]//International Society for Music Information Retrieval Conference,2018:438-444. [75] 李子晋,韩宝强.中国传统乐器音响数据库构建研究[J].中国音乐学,2020(2):92-102. LI Z J,HAN B Q.Research on the construction of sound database of Chinese traditional musical instruments[J].Musicology in China,2020(2):92-102. [76] GONG X,ZHU Y,ZHU H,et al.ChMusic:a traditional Chinese music dataset for evaluation of instrument recognition[C]//ICBDT 2021 4th International Conference on Big Data Technologies.New York:Springer,2021:184-189. [77] 巩霞,姚泽炜,魏浩然.基于人工智能技术的中国民族乐器识别研究[J].山东理工大学学报(社会科学版),2022,38(1):108-112. GONG X,YAO Z W,WEI H R.Research on Chinese national musical instrument recognition based on artificial intelligence technology[J].Journal of Shandong University of Technology(Social Science Edition),2022,38(1):108-112. [78] BANDIERA G,PICAS O R,TOKUDA H,et al.Good-sounds.org:a framework to explore goodness in instrumental sounds[C]//International Society for Music Information Retrieval Conference(ISMIR 2016),2016. [79] ENGEL J,RESNICK C,ROBERTS A,et al.Neural audio synthesis of musical notes with WaveNet autoencoders[C]//International Conference on Machine Learning,2017. [80] BOSCH J J,JANER J,FUHRMANN F,et al.A comparison of sound segregation techniques for predominant instrument recognition in musical audio signals[C]//International Society for Music Information Retrieval(ISMIR2012),2012. [81] FUHRMANN F,HERRERA P.Polyphonic instrument recognition for exploring semantic similarities in music[C]//Proc of 13th Int Conference on Digital Audio Effects DAFx10,2010:1-8. [82] YOSHII K,GOTO M,OKUNO H G.Drum sound recognition for polyphonic audio signals by adaptation and matching of spectrogram templates with harmonic structure suppression[J].IEEE Transactions on Audio,Speech,and Language Processing,2006,15(1):333-345. [83] 蒲亨强.中国音乐通论[M].南京:南京大学出版社,2005:229-230. PU H Q.General theory of Chinese music[M].Nanjing:Nanjing University Press,2005:229-230. |
[1] | GAN Yating, AN Jianye, XU Xue. Survey of Short Text Classification Methods Based on Deep Learning [J]. Computer Engineering and Applications, 2023, 59(4): 43-53. |
[2] | XU Dongdong, CAI Xiaohong, LIU Jing, CAO Hui. Review of Depression Detection Using Social Media Text Data [J]. Computer Engineering and Applications, 2023, 59(4): 54-63. |
[3] | YANG Kunrong, XIONG Yu, ZHANG Jian, CHU Wen. Research on MOOC Dropout Prediction Strategy for Long- and Short-Term Mixed Data [J]. Computer Engineering and Applications, 2023, 59(4): 130-138. |
[4] | LI Ling, GUO Guangsong. Hybrid Many-Objective Evolutionary Optimization Combined with Indexs Decomposition [J]. Computer Engineering and Applications, 2023, 59(4): 165-174. |
[5] | HU Xinjue, FU Zhangjie. Hiding Two Images with High Visual Quality [J]. Computer Engineering and Applications, 2023, 59(4): 235-242. |
[6] | ZHANG Han, ZHENG Weihao, DOU Zhicheng, WEN Jirong. Integrating Multi-Layer Structure Information of Law for Legal Judgement Prediction [J]. Computer Engineering and Applications, 2023, 59(3): 253-263. |
[7] | YANG Hanyu, ZHAO Xiaoyong, WANG Lei. Review of Data Normalization Methods [J]. Computer Engineering and Applications, 2023, 59(3): 13-22. |
[8] | CHEN Xiaoting, LI Shi. Survey on Emotion Recognition in Conversation [J]. Computer Engineering and Applications, 2023, 59(3): 33-48. |
[9] | DU Yuzheng, CAO Hui, NIE Yongqi, WEI Dejian, FENG Yanyan. Application of Deep Learning in Classification and Diagnosis of Alzheimer's Disease [J]. Computer Engineering and Applications, 2023, 59(3): 49-65. |
[10] | LIN Honghui, LIU Jianhua, ZHENG Zhixiong, HU Renyuan, LUO Yixuan. Multi-Task Network for Joint Dialog Act Recognition and Sentiment Classification [J]. Computer Engineering and Applications, 2023, 59(3): 104-111. |
[11] | DING Shangshang, ZHENG Tianli, YAO Kang, ZHANG Hetong, PEI Ronghao, FU Weiwei. Deep-Learning-Based Research on Refractive Detection [J]. Computer Engineering and Applications, 2023, 59(3): 193-201. |
[12] | ZHANG Dongdong, GUO Jie, CHEN Yang. 3D Object Detection Algorithm Based on Raw Point Clouds [J]. Computer Engineering and Applications, 2023, 59(3): 209-217. |
[13] | PAN Mengzhu, LI Qianmu, QIU Tian. Survey of Research on Deep Multimodal Representation Learning [J]. Computer Engineering and Applications, 2023, 59(2): 48-64. |
[14] | WEI Shihong, LIU Hongmei, TANG Hong, ZHU Longjiao. Multilevel Metric Networks for Few-Shot Learning [J]. Computer Engineering and Applications, 2023, 59(2): 94-101. |
[15] | YANG Xiuzhang, WU Shuai, YANG Qi, XIANG Meiyu, LI Na, ZHOU Jisong, ZHAO Xiaoming. Automatic Paper Recommendation Algorithm Based on Multi-View Fusion TextRCNN [J]. Computer Engineering and Applications, 2023, 59(2): 110-119. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||