TAN Rongjie, HONG Zhiyong, YU Wenhua, ZENG Zhiqiang. Decentralized Federated Learning Strategy for Non-Independent and Identically Distributed Data[J]. Computer Engineering and Applications, 2023, 59(1): 269-277.
[1] BOURSE F,MINELLI M,MINIHOLD M,et al.Fast homomorphic evaluation of deep discretized neural networks[C]//Advances in Cryptology-CRYPTO 2018,2018.
[2] SHI E,CHAN T H H,RIEFFEL E,et al.Distributed private data analysis[J].ACM Transactions on Algorithms,2017,13(4):1-38.
[3] KIM H,PARK J,BENNIS M,et al.Blockchained on-device federated learning[J].IEEE Communications Letters,2020,24(6):1279-1283.
[4] RAMANAN P,NAKAYAMA K.BAFFLE:Blockchain based aggregator free federated learning[C]//Proceedings of IEEE International Conference on Blockchain,2020:72-81.
[5] ZHOU S C,HUANG H W,CHEN W H,et al.PIRATE:A blockchain-based secure framework of distributed machine learning in 5G networks[J].IEEE Network,2020,34(6):84-91.
[6] LI Y Z,CHEN C,LIU N,et al.A blockchain-based decentralized federated learning framework with committee consensus[J].IEEE Network,2021,35(1):234-241.
[7] CAO M,ZHANG L,CAO B.Towards on-device federated learning:A direct acyclic graph-based blockchain approach[J].arXiv:2104.13092,2021.
[8] ZHAO Y,LI M,LAI L Z,et al.Federated learning with non-IID data [J].arXiv:1806.00582,2018.
[9] YOSHIDA N,NISHIO T,MORIKURA M,et al.Hybrid-Fl:Cooperative learning mechanism using non-iid data in wireless networks[J].arXiv:1905.07210,2019.
[10] WANG L P,WANG W,LI B.CMFL:Mitigating communication overhead for federated learning[C]//Proceedings of IEEE 39th International Conference on Distributed Computing Systems,2019:954-964.
[11] ONGARO D,OUSTERHOUT J.In search of an understandable consensus algorithm[C]//Proceedings of 2014 USENIX Annual Technical Conference,2014:305-320.
[12] KRIZHEVSKY A.Learning multiple layers of features from tiny images[J].Toronto,California:University of Toronto,2009:54-60.
[13] XIAO H,RASULK V.Fashion-MNIST:A novel image dataset for benchmarking machine learning algorithms[J].arXiv:1708.07747,2017.
[14] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
[15] LIU P,QIU X,HUANG X.Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence,2016:2873-2879.
[16] SUN M S,LI J Y,GUO Z P,et al.THUCTC:An efficient Chinese text classification toolkit[DB/OL].(2016)[2022-03-15].http://thuctc.thunlp.org/.
[17] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[18] NETZER Y,WANG T,COATES A,et al.Reading digits in natural images with unsupervised feature learning[C]//Proceedings of the NIPS Workshop on Deep Learning & Unsupervised Feature Learning,2011:12-47.
[19] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[20] GO A,BHAYANI R,LEI H.Twitter sentiment classification using distant supervision:cs224n Project Report[R].2009.