Improved Traffic Sign Detection Algorithm for YOLOv5
HU Zhaohua, WANG Ying
1.School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2.Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
[1] SOUANI C,FAIEDH H,BESBES K.Efficient algorithm for automatic road sign recognition and its hardware implementation[J].Journal of Real-time Image Processing,2014,9(1):79-93.
[2] MALDONADO B S,LAFUENTE A S,GIL J P,et al.Road-sign detection and recognition based on support vector machines[J].IEEE Transactions on Intelligent Transportation Systems,2007,8(2):264-278.
[3] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Press,2014:580-587.
[4] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE Press,2017:6517-6525.
[5] REDMON J,FARHADI A.YOLOV3:An in cremental improvement[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Press,2018:1-6.
[6] TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington DC,USA:IEEE Computer Society,2020:10781-10790.
[7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2016:21-37.
[8] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington DC,USA:IEEE Press,2015:1440-1448.
[9] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[10] HE K M,ZHANG X Y,REN S Q,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.
[11] KONG T,YAO A B,CHEN Y R,et al.HyperNet;Towards accurate region proposal generation and joint object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Long Beach,CA,USA:IEEE Press,2016:845-853.
[12] ZHU Z,LIANG D,ZHANG S,et al.Traffic-sign detection and classification in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,USA:IEEE Press,2016:2110-2118.
[13] HOUBEN S,STALLKAMP J,SALMEN J,et al.Detection of traffic signs in real-world images:the German traffic sign detection benchmark[C]//Proceedings of 2013 International Joint Conference on Neural Networks.Washington DC,USA:IEEE Press,2013:1-8.
[14] LI J,LIANG X,WEI Y,et al.Perceptual generative adversarial networks for small object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,USA:IEEE Press,2017:1951-1959.
[15] LIU Z,LI D,GE S S,et al.Small traffic sign detection from large image[J].Applied Intelligence,2019,50(1):1-13.
[16] WAN J,DING W,ZHU H,et al.An efficient small traffic sign detection method based on YOLOv3[J].Journal of Signal Processing Systems,2021,93(8):899-911.
[17] TANG Q,CAO G,JO K H.Integrated feature pyramid network with feature aggregation for traffic sign detection[J].IEEE Access,2021,9:117784-117794.
[18] 钱伍,王国中,李国平.改进YOLOv5的交通灯实时检测鲁棒算法[J].计算机科学与探索,2022,16(1):231-241.
QIAN W,WANG G Z,LI G P.Improved YOLOV5 traffic light real-time detection robust algorithm[J].Journal of Frontiers of Computer Science and Technology,2022,16(1):231-241.
[19] Ultralytics.YOLOv5[EB/OL].[2022-06-01].https://github.com/ultralytics/yolov5.
[20] ZHANG Q L,YANG Y B.SA-NET:Shuffle attention for deep convolutional neural networks[C]//Proceedings of 2021 IEEE International Conference on Acoustics,Speech and Signal Processing.Toronto,Canada:IEEE Press,2021:2235-2239.
[21] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,USA:IEEE Computer Society and CVF,2018:8759-8768.
[22] 王林,张文卓.一种融合注意力机制与上下文信息的交通标志检测方法[J].计算机测量与控制,2022,30(3):54-59.
WANG L,ZHANG W Z.A traffic sign detection based on attentional mechanism and contextual information[J].Computer Measurement & Control,2022,30(3):54-59.
[23] LIU S,HUANG D,WANG Y.Receptive field block net for accurate and fast object detection[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Spring,2018:404-419.
[24] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional block attention module[C]//Proceedings of the 15th European Conference.Berlin,Germany:Springer,2018:3-19.
[25] ZHANG J M,HUANG M T,JIN X K,et al.A real-time Chinese traffic sign detection algorithm based on modified YOLOv2[J].Algorithms,2017,10(4):127-140.
[26] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objects in context[C]//Proceedings of the European Conference on Computer Vision.Berlin,Germany:Springer,2014:740-755.
[27] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:7132-7141.
[28] HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:13713-13722.
[29] BOCHKOVSKIY A,WANG C Y,LIAO H Y.YOLOv4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[30] DENG C,WANG M,LIU L,et al.Extended feature pyramid network for small object detection[J].arXiv:2003. 07021,2020.
[31] 刘紫燕,袁磊,朱明成,等.融合SPP和改进FPN的YOLOv3交通标志检测[J].计算机工程与应用,2021,57(7):164-170.
LIU Zi Y,YUAN L,ZHU M C,et al.YOLOv3 traffic sign detection based on SPP and improved FPN[J].Computer Engineering and Applications,2021,57(7):164-170.
[32] 王卜,何扬.基于改进YOLOv3的交通标志检测[J].四川大学学报(自然科学版),2022,59(1):57-67.
WANG B,HE Y.Traffic sign detection based on improved YOLOv3[J].Journal of Sichuan University(Natural Science Edition),2022,59(1):57-67.
[33] 陈梦涛,余粟.基于改进YOLOV4模型的交通标志识别研究[J].微电子学与计算机,2022,39(1):17-25.
CHEN M T,YU S.Research on traffic sign recognition based on improved YOLOV4 model[J].Microelectronics&Computer,2022,39(1):17-25.
[34] 陈昌川,王海宁,赵悦,等.一种基于深度学习的交通标志识别新算法[J].电讯技术,2021,61(1):76-82.
CHEN C C,WANG H N,ZHAO Y,et al.A novel traffic sign recognition algorithm based on deep learning[J].Telecommunication Engineering,2021,61(1):76-82.
[35] 李旭东,张建明,谢志鹏,等.基于三尺度嵌套残差结构的交通标志快速检测算法[J].计算机研究与发展,2020,57(5):1022-1036.
LI X D,ZHANG J M,X Z P,et al.A fast traffic sign detection algorithm based on three-scale nested residual structures[J].Journal of Computer Research and Development,2020,57(5):1022-1036.
[36] 刘宇宸,石刚,崔青,等.改进MobileNetv3-YOLOv3交通标志牌检测算法[J].东北师大学报(自然科学版),2022,54(2):53-60.
LIU Y C,SHI G,CUI Q,et al.Improved MobileNetv3-YOLOv3 traffic sign detection algorithm[J].Journal of Northeast Normal University(Natural Science Edition),2022,54(2):53-60.