[1] AKPINAR M,YUMU?AK N.Daily basis mid-term demand forecast of city natural gas using univariate statistical techniques[J].Journal of the Faculty of Engineering and Architecture of Gazi University,2020,35(2):725-741.
[2] FABBIANI E,MARZIALI A,NICOLAO G D.Short-term forecasting of Italian gas demand[J].Oil,Gas and Coal Technology,2021,26(2):184-201.
[3] ANELKOVI A S,BAJATOVI D.Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas consumption prediction[J].Journal of Cleaner Production,2020,266:122096.
[4] YUKSELTAN E,YUCEKAYA A,BILGE A H,et al.Forecasting models for daily natural gas consumption considering periodic variations and demand segregation[J].Socio-Economic Planning Sciences,2021,74:100937.
[5] ZHOU W,PAN J,DING S.Application of a novel discrete grey model for forecasting natural gas consumption:a case study of Jiangsu Province in China[J].Energy,2020,200:117443.
[6] WU W,MA X,ZENG B,et al.A novel grey Bernoulli model for short-term natural gas consumption forecasting[J].Applied Mathematical Modelling,2020,84:393-404.
[7] 张彤.基于WT_LMD与GRU的短期燃气负荷预测方法[D].上海:上海师范大学,2019.
ZHANG T.A combined forecasting model based on improved LMD algorithm and GRU[D].Shanghai:Shanghai Normal University,2019.
[8] 王晓霞,徐晓钟.基于集成深度学习算法的燃气负荷预测方法[J].计算机系统应用,2019,28(12):47-54.
WANG X X,XU X Z.Gas load forecasting method based on integrated deep learning algorithms[J].Computer Systems & Applications,2019,28(12):47-54.
[9] 龚承柱,李兰兰,杨娟,等.基于EMD-PSR-LSSVM的城市燃气管网短期负荷预测[J].系统工程理论与实践,2014,34(11):267-274.
GONG C Z,LI L L,YANG J.An integrated short-term load forecasting approach for urban gas pipeline network based on EMD,PSR and LSSVM[J].Systems Engineering-Theory & Practice,2014,34(11):267-274.
[10] 陆继翔,张琪培,杨志宏,等.基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J].电力系统自动化,2019,43(8):191-197.
LU J X,ZHANG Q P,YANG Z H.Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J].Automation of Electric Power Systems,2019,43(8):191-197.
[11] 宋娟,廖尚泰.基于BP神经网络与多元线性回归的短期燃气负荷预测[J].宁夏工程技术,2019,18(4):343-346.
SONG J,LIAO S T,YANG J.Short-term gas load forecasting based on BP neural network and multivariable linear regression[J].Ningxia Engineering Technology,2019,18(4):343-346.
[12] 陈川,陈冬林,何李凯.基于BPNN-EMD-LSTM组合模型的城市短期燃气负荷预测[J].安全与环境工程,2019,26(1):153-158.
CHENG C,CHENG D L,HE L K.Short-term forecast of urban natural gas load based on BPNN-EMD-LSTM combined model[J].Safty and Environmental Engineering,2019,26(1):153-158.
[13] YANG B,LI J.Complex network analysis of three-way decision researches[J].International Journal of Machine Learning and Cybernetics,2020,11(5):973-987.
[14] LI B,TIAN L,CHEN D,et al.An adaptive dwell time scheduling model for phased array radar based on three-way decision[J].Journal of Systems Engineering and Electronics,2020,31(3):500-509.
[15] LI X,WANG H,XU Z S.Work resumption after epidemic using three-way decisions[J].International Journal of Fuzzy Systems,2021,23(3):630-641.
[16] 方宇,高磊,刘忠慧.基于三支决策的广义代价敏感近似属性约简[J].南京理工大学学报,2019,43(4):481-488.
FANG Y,GAO L,LIU Z H.Generalized cost-sensitive approximate attribute reduction based on three-way decisions[J].Journal of Nanjing University of Science and Technology,2019,43(4):481-488.
[17] YAO J T,AZAM N.Web-based medical decision support systems for three-way medical decision making with game-theoretic rough sets[J].IEEE Transactions on Fuzzy Systems,2015,23(1):3-15.
[18] YU H,ZHANG C,WANG G Y.A tree-based incremental overlapping clustering method using the three-way decision theory[J].Knowledge-Based Systems,2016,91:189-203.
[19] JIA X Y,LIAO W H,TANG Z M,et al.Minimum cost attribute reduction in decision-theoretic rough set models[J].Information Sciences,2013,219:151-167.
[20] 方宇,闵帆,刘忠慧,等.序贯三支决策的代价敏感分类方法[J].南京大学学报(自然科学),2018,54(1):148-156.
FANG Y,MIN F,LIU Z H,et al.Sequential three-way decisions based cost-sensitive approach to classification[J].Journal of Nanjing University(Natural Science),2018,54(1):148-156.
[21] 高铁梅.计量经济分析方法与建模[M].北京:清华大学出版社,2006:152.
GAO T M.Econometric analysis methods and modeling[M].Beijing:Tsinghua University Press,2006:152.
[22] YU X.Light gradient boosting machine:an efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data[J].Agricultural Water Management,2019,225:105758.
[23] CLEVELAND R B,CLEVELAND W S.STL:a seasonal-trend decomposition procedure based on Loess[J].Journal of Official Statistics,1990,6(1):3-33.
[24] CLEVELAND W S.Robust locally weighted regression and smoothing scatterplots[J].Journal of the American Statistical Association,2012,74(368):829-836.
[25] YAO Y Y,DENG X.Sequential three-way decisions with probabilistic rough sets[C]//Proceedings of the 10th IEEE International Conference on Cognitive Informatics and Cognitive Computing,2011:18-20.
[26] YAO Y Y.Three-way decision and granular computing[J].International Journal of Approximate Reasoning,2018,103:107-123.