WANG Lan, KONG Xiangyi, ZHANG Haitao. Image Super-Resolution Based on Blur Kernel Correction with Unknown Degradation Method[J]. Computer Engineering and Applications, 2022, 58(21): 232-242.
[1] 曾凯,丁世飞.图像超分辨率重建的研究进展[J].计算机工程与应用,2017,53(16):29-35.
ZENG K,DING S F.Advances in image super-resolution reconstruction[J].Computer Engineering and Applications,2017,53(16):29-35.
[2] DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307.
[3] DONG C,LOY C C,TANG X.Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision.Cham:Springer,2016:391-407.
[4] SHI W,CABALLERO J,HUSZáR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1874-1883.
[5] KIM J,LEE J K,LEE K M.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1646-1654.
[6] GHIFARY M,KLEIJN W B,ZHANG M,et al.Deep reconstruction-classification networks for unsupervised domain adaptation[C]//European Conference on Computer Vision.Cham:Springer,2016:597-613.
[7] MAO X J,SHEN C,YANG Y B.Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J].arXiv:1603.09056,2016.
[8] TAI Y,YANG J,LIU X.Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3147-3155.
[9] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:136-144.
[10] LEDIG C,THEIS L,HUSZáR F,et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4681-4690.
[11] 李现国,冯欣欣,李建雄.多尺度残差网络的单幅图像超分辨率重建[J].计算机工程与应用,2021,57(7):215-221.
LI X G,FENG X X,LI J X.Sigle image super-resolution reconstruction based on multi-scale residual network[J].Computer Engineering and Applications,2021,57(7):215-221.
[12] 郭继昌,吴洁,郭春乐,等.基于残差连接卷积神经网络的图像超分辨率重构[J].吉林大学学报(工学版),2019,49(5):1726-1734.
GUO J C,WU J,GUO C L,et al.Image super-resolution reconstruction based on residual connection convolutional neural network[J].Journal of Jilin University(Engineering and Technology Edition),2019,49(5):1726-1734.
[13] TONG T,LI G,LIU X,et al.Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:4799-4807.
[14] WANG X,YU K,WU S,et al.Esrgan:enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops,2018.
[15] BELL-KLIGLER S,SHOCHER A,IRANI M.Blind super-resolution kernel estimation using an internalgan[J].arXiv:1909.06581,2019.
[16] SHOCHER A,COHEN N,IRANI M.“zero-shot” super-resolution using deep internal learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3118-3126.
[17] ZHANG K,ZUO W,ZHANG L.Deep plug-and-play super-resolution for arbitrary blur kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:1671-1681.
[18] ZHOU R,SUSSTRUNK S.Kernel modeling super-resolution on real low-resolution images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:2433-2443.
[19] GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improved training of wasserstein gans[J].arXiv:1704. 00028,2017.
[20] GU J,LU H,ZUO W,et al.Blind super-resolution with iterative kernel correction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:1604-1613.
[21] WANG X,YU K,DONG C,et al.Recovering realistic texture in image super-resolution by deep spatial feature transform[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:606-615.
[22] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,2015:448-456.
[23] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
[24] ZHANG K,ZUO W,ZHANG L.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3262-3271.
[25] ZHOU R,SUSSTRUNK S.Kernel modeling super-resolution on real low-resolution images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:2433-2443.
[26] IGNATOV A,KOBYSHEV N,TIMOFTE R,et al.Dslr-quality photos on mobile devices with deep convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:3277-3285.
[27] TIMOFTE R,AGUSTSSON E,VAN GOOL L,et al.Ntire 2017 challenge on single image super-resolution:methods and results[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:114-125.
[28] AGUSTSSON E,TIMOFTE R.Ntire 2017 challenge on single image super-resolution:dataset and study[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,2017:126-135.
[29] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105.
[30] BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of 2012 British Machine Vision Conference,2012.
[31] ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference.Berlin,Heidelberg:Springer-Verlag,2012:711-730.
[32] MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision.Vancouver,BC,Canada:IEEE,2002:416-423.