YANG Xianing, WANG Banghai, LI Zuolong. Super-Resolution Reconstruction of Aerial Images Based on Hierarchical Feature Fusion Network[J]. Computer Engineering and Applications, 2022, 58(19): 224-232.
[1] 蒋文杰,罗晓曙,戴沁璇.基于对抗网络人脸超分辨率重建算法研究[J].计算机工程与应用,2021,57(11):219-223.
JIANG W J,LUO X S,DAI Q X.Research on face super-resolution reconstruction algorithm based on gene-rative adversarial networks[J].Computer Engineering and Applications,2021,57(11):219-223.
[2] 卢峰,周琳,蔡小辉.面向安防监控场景的低分辨率人脸识别算法研究[J].计算机应用研究,2021,38(4):1230-1234.
LU F,ZHOU L,CAI X H.Research on low resolution face recognition algorithm for security surveillance scene[J].Application Research of Computers,2021,38(4):1230-1234.
[3] 蒋文杰,罗晓曙,戴沁璇.基于对抗网络遥感图像超分辨率重建研究[J].计算机工程与应用,2020,56(21):199-203.
JIANG W J,LUO X S,DAI Q X.Research on super- resolution reconstruction of remote sensing image based on improved conditional generative adversarial networks[J].Computer Engineering and Applications,2020,56(21):199-203.
[4] CHEN Y,CHRISTODOULOU A G,ZHOU Z,et al.MRI super-resolution with GAN and 3D multi-level DenseNet:Smaller,faster,and better[J].arXiv:2003.01217,2020.
[5] 谢海平,谢凯利,杨海涛.图像超分辨率方法研究进展[J].计算机工程与应用,2020,56(19):34-41.
XIE H P,XIE K L,YANG H T.Research progress of image super-resolution methods[J].Computer Engineering and Applications,2020,56(19):34-41.
[6] TOMASI C,MANDUCHI R.Bilateral filtering for gray and color images[C]//Proceedings of the IEEE International Conference on Computer Vision,1998:839-846.
[7] LIU C,SUN D Q.On Bayesian adaptive video super resolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(2):346-360.
[8] 刘钢,彭群生,鲍虎军.基于图像建模技术研究综述与展望[J].计算机辅助设计与图形学学报,2005,17(1):18-27.
LIU G,PENG Q S,BAO H J.Review and prospect of image-based modeling techniques[J].Journal of Computer-aided Design and Computer Graphics,2005,17(1):18-27.
[9] DONG C,LOY C C,HE K,et al.Learning a deep convolutional network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision,2014:184-199.
[10] DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307.
[11] DONG C,LOY C C,TANG X O.Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European Conference on Computer Vision,2016:391-407.
[12] KIM J,KWON LEE J,MU LEE K.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1646-1654.
[13] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[14] KIM J,KWON LEE J,MU LEE K.Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,Jun 27-30,2016:1637-1645.
[15] ZAREMBA W,SUTSKEVER I,VINYALS O.Recurrent neural network regularization[J].arXiv:1409.2329,2014.
[16] TAI Y,YANG J,LIU X M,Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,Jul 21-26,2017:2790-2798.
[17] TONG T,LI G,LIU X,et al.Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:4799-4807.
[18] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
[19] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:136-144.
[20] RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention,2015:234-241.
[21] ZEILER M,KRISHNAN D,TAYLOR G,et al.Deconvolutional networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2010:2528-2535.
[22] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023.
[23] ZHANG Y L,LI K P,LI K,et al.Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the European Conference on Computer Vision,2018:294-310.
[24] LIU J,ZHANG W,TANG Y,et al.Residual feature aggregation network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Seattle,Jun 13-19,2020:2356-2365.
[25] WANG Q,WU B G,ZHU P F,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2020:11531-11539.
[26] SHI W,CABALLERO J,HUSZAR F,et al.Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:1874-1883.
[27] XIA G S,BAI X,DING J,et al.DATA:A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3974-3983.
[28] WANG X,YU K,WU S X,et al.ESRGAN:Enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision Workshops,2018.